Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted agents and immunotherapies: optimizing outcomes in melanoma

Key Points

  • Clinical therapeutics for advanced-stage melanoma have improved dramatically with the development of BRAF and MEK inhibitors, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell-death protein 1 (PD-1) blocking antibodies, and a modified oncolytic herpes virus that is delivered intratumourally

  • The overall survival of patients with advanced-stage melanoma has improved from 9 months before 2011 to an as yet undefined timeframe, with a subset of patients having ongoing long-term tumour control

  • Melanoma, particularly cutaneous melanoma, is amendable to immunotherapy for various reasons, including extensive tumour infiltration by T cells, a high mutational load, and crosstalk between oncogenic signalling pathways and immunobiology

  • Resistance mechanisms to BRAF-targeted treatments and immunotherapies are being elucidated; reactivation of the MAPK pathway is common after BRAF inhibition, whereas the effectiveness of both approaches might be limited by loss of tumour antigen presentation and T-cell trafficking

  • To move the field of clinical therapeutics forward, a greater focus on specific patient populations (based on serum lactose dehydrogenase levels, ECOG performance status, and number of metastases), as well as on landmark progression-free and overall survival measures, will be required in clinical trials

Abstract

Treatment options for patients with metastatic melanoma, and especially BRAF-mutant melanoma, have changed dramatically in the past 5 years, with the FDA approval of eight new therapeutic agents. During this period, the treatment paradigm for BRAF-mutant disease has evolved rapidly: the standard-of-care BRAF-targeted approach has shifted from single-agent BRAF inhibition to combination therapy with a BRAF and a MEK inhibitor. Concurrently, immunotherapy has transitioned from cytokine-based treatment to antibody-mediated blockade of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and, now, the programmed cell-death protein 1 (PD-1) immune checkpoints. These changes in the treatment landscape have dramatically improved patient outcomes, with the median overall survival of patients with advanced-stage melanoma increasing from approximately 9 months before 2011 to at least 2 years — and probably longer for those with BRAF-V600-mutant disease. Herein, we review the clinical trial data that established the standard-of-care treatment approaches for advanced-stage melanoma. Mechanisms of resistance and biomarkers of response to BRAF-targeted treatments and immunotherapies are discussed, and the contrasting clinical benefits and limitations of these therapies are explored. We summarize the state of the field and outline a rational approach to frontline-treatment selection for each individual patient with BRAF-mutant melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline charting the seminal, practice-changing clinical trials in advanced-stage melanoma.
Figure 2: Frequency and overlap of alterations in driver and tumour-suppressor genes associated with melanoma.
Figure 3: Summary of overall survival by Kaplan–Meier analysis across seminal clinical trials in patients with advanced-stage melanoma.
Figure 4: Molecular signalling and immunological interactions relevant to the clinical treatment of melanoma.
Figure 5: Factors associated with overall survival in patients with melanoma treated with dabrafenib and trametinib.

Similar content being viewed by others

References

  1. Luke, J. J. & Schwartz, G. K. Chemotherapy in the management of advanced cutaneous malignant melanoma. Clin. Dermatol. 31, 290–297 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

  6. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai, K. K. et al. Efficacy and safety of programmed death receptor-1 (PD-1) blockade in metastatic uveal melanoma (UM). J. Clin. Oncol. 34 (Suppl.), abstr. 9507 (2016).

    Article  Google Scholar 

  8. Luke, J. J. et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer 119, 3687–3695 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Albino, A. P., Le Strange, R., Oliff, A. I., Furth, M. E. & Old, L. J. Transforming ras genes from human melanoma: a manifestation of tumour heterogeneity? Nature 308, 69–72 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Guldberg, P. et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. 57, 3660–3663 (1997).

    CAS  PubMed  Google Scholar 

  13. Shain, A. H. et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373, 1926–1936 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melnikova, V. O., Bolshakov, S. V., Walker, C. & Ananthaswamy, H. N. Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23, 2347–2356 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Curtin, J. A., Busam, K., Pinkel, D. & Bastian, B. C. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol. 24, 4340–4346 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kong, Y. et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin. Cancer Res. 17, 1684–1691 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71, 2750–2760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Nathanson, K. L. et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin. Cancer Res. 19, 4868–4878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Long, G. V. et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol. 29, 1239–1246 (2011).

    Article  PubMed  Google Scholar 

  23. Menzies, A. M. et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin. Cancer Res. 18, 3242–3249 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Klein, O. et al. BRAF inhibitor activity in V600R metastatic melanoma. Eur. J. Cancer 49, 1073–1079 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Greaves, W. O. et al. Frequency and spectrum of BRAF mutations in a retrospective, single-institution study of 1112 cases of melanoma. J. Mol. Diagn. 15, 220–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dahlman, K. B. et al. BRAFL597 mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2, 791–797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Botton, T. et al. Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell Melanoma Res. 26, 845–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bowyer, S. E. et al. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. Melanoma Res. 24, 504–508 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Sen, B. et al. Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci. Transl Med. 4, 136ra70 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Naoki, K., Chen, T. H., Richards, W. G., Sugarbaker, D. J. & Meyerson, M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 62, 7001–7003 (2002).

    CAS  PubMed  Google Scholar 

  31. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Yao, Z. et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28, 370–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carvajal, R. D. et al. KIT as a therapeutic target in metastatic melanoma. JAMA 305, 2327–2334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hodi, F. S. et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J. Clin. Oncol. 31, 3182–3190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, J. et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J. Clin. Oncol. 29, 2904–2909 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Thomas, N. E. et al. Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J. Clin. Oncol. 31, 4252–4259 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vallacchi, V. et al. Transcriptional profiling of melanoma sentinel nodes identify patients with poor outcome and reveal an association of CD30+ T lymphocytes with progression. Cancer Res. 74, 130–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Brichard, V. et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178, 489–495 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Zeng, G., Wang, X., Robbins, P. F., Rosenberg, S. A. & Wang, R. F. CD4+ T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc. Natl Acad. Sci. USA 98, 3964–3969 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harada, M., Li, Y. F., El-Gamil, M., Rosenberg, S. A. & Robbins, P. F. Use of an in vitro immunoselected tumor line to identify shared melanoma antigens recognized by HLA-A*0201-restricted T cells. Cancer Res. 61, 1089–1094 (2001).

    CAS  PubMed  Google Scholar 

  41. Kawakami, Y. et al. Recognition of shared melanoma antigens in association with major HLA-A alleles by tumor infiltrating T lymphocytes from 123 patients with melanoma. J. Immunother. 23, 17–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Larkin, J. et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 1, 433–440 (2015).

    Article  PubMed  Google Scholar 

  45. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Mangana, J. et al. Analysis of BRAF and NRAS mutation status in advanced melanoma patients treated with anti-CTLA-4 antibodies: association with overall survival? PLoS ONE 10, e0139438 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Flaherty, K. T. et al. Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J. Clin. Oncol. 31, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. McArthur, G. A. et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Solit, D. B. & Rosen, N. Resistance to BRAF inhibition in melanomas. N. Engl. J. Med. 364, 772–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Luke, J. J. & Hodi, F. S. Ipilimumab, vemurafenib, dabrafenib, and trametinib: synergistic competitors in the clinical management of BRAF mutant malignant melanoma. Oncologist 18, 717–725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Flaherty, K. et al. Updated overall survival (OS) for BRF113220, a phase 1–2 study of dabrafenib (D) alone versus combined dabrafenib and trametinib (D+T) in pts with BRAF V600 mutation-positive (+) metastatic melanoma (MM). J. Clin. Oncol. 32 (Suppl.), abstr. 9010 (2014).

    Article  Google Scholar 

  62. Long, G. V. et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386, 444–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. Robert, C. et al. Two year estimate of overall survival in COMBI-v, a randomized, open-label, phase III study comparing the combination of dabrafenib (D) and trametinib (T) with vemurafenib (Vem) as first-line therapy in patients (pts) with unresectable or metastatic BRAF V600E/K mutation-positive cutaneous melanoma [abstract 3301]. Eur. J. Cancer 51 (Suppl. 3), S663 (2015).

    Article  Google Scholar 

  65. Ribas, A. et al. Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet Oncol. 15, 954–965 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

    Article  PubMed  CAS  Google Scholar 

  67. McArthur, G. et al. Impact of baseline genetic heterogeneities on progression-free survival (PFS) in patients (pts) with advanced BRAFV600-mutated melanoma treated with cobimetinib (COBI) + vemurafenib (VEM) in the phase 3 coBRIM study [abstract 25LBA]. Eur. J. Cancer 51 (Suppl. 3), S722–S723 (2015).

    Article  Google Scholar 

  68. Ascierto, P. A. et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 17, 1248–1260 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Dossett, L. A., Kudchadkar, R. R. & Zager, J. S. BRAF and MEK inhibition in melanoma. Expert Opin. Drug Saf. 14, 559–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Richman, J., Martin-Liberal, J., Diem, S. & Larkin, J. BRAF and MEK inhibition for the treatment of advanced BRAF mutant melanoma. Expert Opin. Pharmacother. 16, 1285–1297 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Ascierto, P. A. et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 14, 249–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Dummer, R. et al. Results of NEMO: a phase III trial of binimetinib (BINI) versus dacarbazine (DTIC) in NRAS-mutant cutaneous melanoma. J. Clin. Oncol. 34 (Suppl.), abstr. 9500 (2016).

    Article  Google Scholar 

  73. Kwong, L. N. et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat. Med. 18, 1503–1510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ji, Z. et al. p53 rescue through HDM2 antagonism suppresses melanoma growth and potentiates MEK inhibition. J. Invest. Dermatol. 132, 356–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Atefi, M. et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS ONE 6, e28973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coit, D. G. et al. Melanoma. J. Natl Compr. Canc. Netw. 10, 366–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Ascierto, P. A. et al. Overall survival (OS) and safety results from a phase 3 trial of ipilimumab (IPI) at 3 mg/kg versus 10 mg/kg in patients with metastatic melanoma (MEL). Ann. Oncol. 27 (Suppl. 6), abstr.1106O (2016).

    Google Scholar 

  80. Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Margolin, K. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 13, 459–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Topalian, S. L. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 32, 1020–1030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ribas, A. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16, 908–918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107, 4275–4280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hodi, F. S. et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17, 1558–1568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weber, J. S. et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 17, 943–955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ott, P. A. & Hodi, F. S. Talimogene laherparepvec for the treatment of advanced melanoma. Clin. Cancer Res. 22, 3127–3131 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Dranoff, G. GM-CSF-based cancer vaccines. Immunol. Rev. 188, 147–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl Med. 5, 200ra116 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ribas, A. et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. J. Clin. Oncol. 33 (Suppl.), abstr. 3001 (2015).

    Article  Google Scholar 

  101. Puzanov, I. et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 34, 2619–2626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Long, G. V. et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 34, (Suppl.), abstr. 9568 (2016).

    Article  Google Scholar 

  103. Schachter, J. et al. Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival analysis of KEYNOTE-006. J. Clin. Oncol. 34 (Suppl.), abstr. 9504 (2016).

    Article  Google Scholar 

  104. Kido, K. et al. Simultaneous suppression of MITF and BRAF V600E enhanced inhibition of melanoma cell proliferation. Cancer Sci. 100, 1863–1869 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Jager, E. et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int. J. Cancer 66, 470–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilmott, J. S. et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res. 18, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Cooper, Z. A. et al. Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncoimmunology 5, e1136044 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hu-Lieskovan, S. et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci. Transl Med. 7, 279ra41 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wang, T. et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin. Cancer Res. 21, 1652–1664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ribas, A. et al. Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. J. Clin. Oncol. 33 (Suppl.), abstr. 3003 (2015).

    Article  Google Scholar 

  113. Hwu, P. et al. Preliminary safety and clinical activity of atezolizumab combined with cobimetinib and vemurafenib in BRAF V600-mutant metastatic melanoma. Ann. Oncol. 27 (Suppl. 6), abstr.1109PD (2016).

    Google Scholar 

  114. Ribas, A. et al. Pembrolizumab (pembro) in combination with dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma: phase 1 KEYNOTE-022 study. J. Clin. Oncol. 34 (Suppl.), abstr. 3014 (2016).

    Article  Google Scholar 

  115. Carlino, M. S., Long, G. V., Kefford, R. F. & Rizos, H. Targeting oncogenic BRAF and aberrant MAPK activation in the treatment of cutaneous melanoma. Crit. Rev. Oncol. Hematol. 96, 385–398 (2015).

    Article  PubMed  Google Scholar 

  116. Johnson, D. B. et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer 51, 2792–2799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Long, G. V. et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun. 5, 5694 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 4, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162, 1271–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gray, E. S. et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget 6, 42008–42018 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Luo, X. et al. Isolation and molecular characterization of circulating melanoma cells. Cell Rep. 7, 645–653 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Santiago-Walker, A. et al. Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin. Cancer Res. 22, 567–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Parmenter, T. J. et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov. 4, 423–433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gopal, Y. N. et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 74, 7037–7047 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frederick, D. T. et al. Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 mimetics. PLoS ONE 9, e101286 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Corcoran, R. B. et al. TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma. Sci. Transl Med. 5, 196ra98 (2013).

    Article  PubMed  CAS  Google Scholar 

  130. Haq, R. et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl Acad. Sci. USA 110, 4321–4326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302–315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goodall, J. et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 7788–7794 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Konieczkowski, D. J. et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816–827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Muller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Kim, H. et al. Downregulation of the ubiquitin ligase RNF125 underlies resistance of melanoma cells to BRAF inhibitors via JAK1 deregulation. Cell Rep. 11, 1458–1473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Ji, R. R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61, 1019–1031 (2011).

    Article  PubMed  CAS  Google Scholar 

  141. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Seiwert, T. Y. et al. Inflamed-phenotype gene expression signatures to predict benefit from the anti-PD-1 antibody pembrolizumab in PD-L1+ head and neck cancer patients. J. Clin. Oncol. 33 (Suppl.), abstr. 6017 (2015).

    Article  Google Scholar 

  143. Plimack, E. R. et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012. J. Clin. Oncol. 33 (Suppl.), abstr. 4502 (2015).

    Article  Google Scholar 

  144. Shankaran, V. et al. Correlation of gene expression signatures and clinical outcomes in patients with advanced gastric cancer treated with pembrolizumab (MK-3475). J. Clin. Oncol. 33 (Suppl.), abstr. 3026 (2015).

    Article  Google Scholar 

  145. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Ascierto, P. A. & Long, G. V. Progression-free survival landmark analysis: a critical endpoint in melanoma clinical trials. Lancet Oncol. 17, 1037–1039 (2016).

    Article  PubMed  Google Scholar 

  150. Balch, C. M. et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 27, 6199–6206 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Long, G. V. et al. Baseline and postbaseline characteristics associated with treatment benefit across dabrafenib and trametinib registration pooled data [abstract]. Pigment Cell Melanoma Res. 28, 793 (2015).

    Google Scholar 

  152. Joseph, R. et al. Baseline tumor size as an independent prognostic factor for overall survival in patients with metastatic melanoma treated with the anti-PD-1 monoclonal antibody MK-3475. J. Clin. Oncol. 32 (Suppl.), abstr. 3015 (2014).

    Article  Google Scholar 

  153. Larkin, J. et al. Efficacy and safety in key patient subgroups of nivolumab (NIVO) alone or combined with ipilimumab (IPI) versus IPI alone in treatment-naïve patients with advanced melanoma (MEL) (CheckMate 067) [abstract 3303]. Eur. J. Cancer 51 (Suppl. 3), S664–S665 (2015).

    Article  Google Scholar 

  154. Robert, C. et al. Three-year overall survival for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. J. Clin. Oncol. 34 (Suppl.), abstr. 9503 (2016).

    Article  Google Scholar 

  155. Robert, C. et al. Three-year estimate of overall survival in COMBI-v, a randomized phase 3 study evaluating first-line dabrafenib (D) + trametinib (T) in patients (pts) with unresectable or metastatic BRAF V600E/K–mutant cutaneous melanoma. J. Clin. Oncol. 27 (Suppl. 6), abstr. LBA40 (2016).

    Google Scholar 

  156. Flaherty, K. et al. Genomic analysis and 3-y efficacy and safety update of COMBI-d: a phase 3 study of dabrafenib (D) + trametinib (T) versus D monotherapy in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. J. Clin. Oncol. 34 (Suppl.), abstr. 9502 (2016).

    Article  Google Scholar 

  157. Lyle, M. K. et al. Lesion-specific patterns of response and progression with anti-PD-1 treatment in metastatic melanoma (MM). J. Clin. Oncol. 32 (5s Suppl.), abstr. 9077 (2015).

    Google Scholar 

  158. Long, G. V. et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 17, 1743–1754 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Hauschild, A. et al. Update on overall survival (os) and follow-on therapies in BREAK-3, a phase III, randomized trial: dabrafenib (D) versus dacarbazine (DTIC) in patients (pts) with BRAF V600E mutation-positive metastatic melanoma (MM) [abstract 1092PD]. Ann. Oncol. 25, iv378 (2014).

    Article  Google Scholar 

  160. Daud, A. et al. Updated overall survival (OS) results for BRF113220, a phase I–II study of dabrafenib alone versus combined dabrafenib and trametinib in patients with BRAF V600 metastatic melanoma (MM). J. Clin. Oncol. 33 (Suppl.), abstr. 9036 (2015).

    Article  Google Scholar 

  161. Long, G. V. et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 1087–1095 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 1893–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dummer, R. et al. Vemurafenib in patients with BRAFV600 mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur. J. Cancer 50, 611–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Sandhu, S. et al. Circulating tumor DNA (ctDNA) to track responses and to capture the genomic heterogeneity of metastatic melanoma. J. Clin. Oncol. 34 (Suppl.), abstr. 9582 (2016).

    Article  Google Scholar 

  165. Ackerman, A. et al. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120, 1695–1701 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Ascierto, P. A. et al. Sequential treatment with ipilimumab and BRAF inhibitors in patients with metastatic melanoma: data from the Italian cohort of the ipilimumab expanded access program. Cancer Invest. 32, 144–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Long, G. V. et al. Pembrolizumab (pembro) plus ipilimumab (ipi) for advanced melanoma: results of the KEYNOTE-029 expansion cohort. J. Clin. Oncol. 34 (Suppl.), abstr. 9506 (2016).

    Article  Google Scholar 

  170. Gangadhar, T. C. et al. Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers [abstract]. J. Immunother. Cancer 3 (Suppl. 2), O7 (2015).

    Article  PubMed Central  Google Scholar 

  171. Goldberg, S. B. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 17, 976–983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.J.L. has received funding from the Paul Calabresi Career Development in Clinical Oncology Award (NIH 1K12CA139160-05) and the Arthur J Schreiner Family Melanoma Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for the article, discussions of content, and writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Jason J. Luke.

Ethics declarations

Competing interests

J.J.L. has acted as a consultant for Amgen, Array, AstraZeneca, BeneVir, Bristol-Myers Squibb, CheckMate, EMD Serono, Gilead, Novartis, and Merck (non-paid). K.T.F. has been a consultant for Amgen, BMS, Merck, Novartis, and Roche. A.R. has acted as a consultant for Amgen, Array, BMS, Genentech-Roche, Merck MSD, and Novartis, and is a stock holder in Advaxis, Compugen, CytomX, Five Prime Therapeutics, and Kite Pharma. G.V.L. has been a consultant for Amgen, Array, BMS, Merck MSD, Novartis, Pierre-Fabre, and Roche.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, J., Flaherty, K., Ribas, A. et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 14, 463–482 (2017). https://doi.org/10.1038/nrclinonc.2017.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing