Perioperative events influence cancer recurrence risk after surgery

Key Points

  • Surgery remains the primary treatment for patients with solid tumours, yet postoperative locoregional recurrence and distant metastasis occur frequently and confer high risks of morbidity and mortality

  • Deleterious effects of surgery include the initiation of local and/or systemic inflammation, increased catecholamine levels, immunosuppression, a prothrombotic state, and exposure to anaesthetic agents; these processes overlap with cancer-promoting signalling pathways

  • Cancer cells that escape resection are subject to perioperative physiological changes and might disseminate and colonize distant organs, thus contributing to postoperative cancer recurrence

  • Perioperative use of β-adrenoceptor antagonists, anti-inflammatory drugs, intravenous anaesthetics, and antithrombotic agents is linked with improved survival outcomes in patients with cancer

  • >60% of patients with cancer are treated with surgery; therefore, offsetting the deleterious effects of surgery by use of affordable and readily available therapies might rapidly improve the postoperative survival of patients with cancer

Abstract

Surgery is a mainstay treatment for patients with solid tumours. However, despite surgical resection with a curative intent and numerous advances in the effectiveness of (neo)adjuvant therapies, metastatic disease remains common and carries a high risk of mortality. The biological perturbations that accompany the surgical stress response and the pharmacological effects of anaesthetic drugs, paradoxically, might also promote disease recurrence or the progression of metastatic disease. When cancer cells persist after surgery, either locally or at undiagnosed distant sites, neuroendocrine, immune, and metabolic pathways activated in response to surgery and/or anaesthesia might promote their survival and proliferation. A consequence of this effect is that minimal residual disease might then escape equilibrium and progress to metastatic disease. Herein, we discuss the most promising proposals for the refinement of perioperative care that might address these challenges. We outline the rationale and early evidence for the adaptation of anaesthetic techniques and the strategic use of anti-adrenergic, anti-inflammatory, and/or antithrombotic therapies. Many of these strategies are currently under evaluation in large-cohort trials and hold promise as affordable, readily available interventions that will improve the postoperative recurrence-free survival of patients with cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The effects of surgery and perioperative stress on cancer recurrence.
Figure 2: Putative mechanisms of postoperative cancer recurrence and metastasis.

References

  1. 1

    Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nat. Rev. Cancer 6, 449–458 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Murthy, B. L. et al. Postoperative wound complications and systemic recurrence in breast cancer. Br. J. Cancer 97, 1211–1217 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Beecher, S. M., O'Leary, D. P., McLaughlin, R., Sweeney, K. J. & Kerin, M. J. Influence of complications following immediate breast reconstruction on breast cancer recurrence rates. Br. J. Surg. 103, 391–398 (2016).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Lu, Z. R., Rajendran, N., Lynch, A. C., Heriot, A. G. & Warrier, S. K. Anastomotic leaks after restorative resections for rectal cancer compromise cancer outcomes and survival. Dis. Colon Rectum 59, 236–244 (2016).

    PubMed  Article  Google Scholar 

  5. 5

    Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  Google Scholar 

  6. 6

    Brown, D. C., Purushotham, A. D., Birnie, G. D. & George, W. D. Detection of intraoperative tumor cell dissemination in patients with breast cancer by use of reverse transcription and polymerase chain reaction. Surgery 117, 95–101 (1995).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Hashimoto, M. et al. Significant increase in circulating tumour cells in pulmonary venous blood during surgical manipulation in patients with primary lung cancer. Interact. Cardiovasc. Thorac. Surg. 18, 775–783 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Peach, G., Kim, C., Zacharakis, E., Purkayastha, S. & Ziprin, P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. Br. J. Cancer 102, 1327–1334 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Sceneay, J. et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Kurosawa, S. & Kato, M. Anesthetics, immune cells, and immune responses. J. Anesth. 22, 263–277 (2008).

    PubMed  Article  Google Scholar 

  12. 12

    Zhou, L. et al. Propranolol attenuates surgical stress-induced elevation of the regulatory T cell response in patients undergoing radical mastectomy. J. Immunol. 196, 3460–3469 (2016).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Demicheli, R., Retsky, M. W., Hrushesky, W. J. M. & Baum, M. Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat. Clin. Pract. Oncol. 4, 699–710 (2007).

    PubMed  Article  Google Scholar 

  14. 14

    Retsky, M. et al. Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: new findings and a review. Curr. Med. Chem. 20, 4163–4176 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Lee, J.-W. et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clin. Cancer Res. 15, 2695–2702 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Kelsey, C. R. et al. Metastasis dynamics for non-small-cell lung cancer: effect of patient and tumor-related factors. Clin. Lung Cancer 14, 425–432 (2013).

    PubMed  Article  Google Scholar 

  17. 17

    Oosterling, S. J., van der Bij, G. J., van Egmond, M. & van der Sijp, J. R. M. Surgical trauma and peritoneal recurrence of colorectal carcinoma. Eur. J. Surg. Oncol. 31, 29–37 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Dillekås, H. et al. The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast Cancer Res. Treat. 158, 169–178 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Isern, A. E. et al. Risk of recurrence following delayed large flap reconstruction after mastectomy for breast cancer. Br. J. Surg. 98, 659–666 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Mirnezami, A. et al. Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak: systematic review and meta-analysis. Ann. Surg. 253, 890–899 (2011).

    PubMed  Article  Google Scholar 

  21. 21

    Wigmore, T. J., Mohammed, K. & Jhanji, S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology 124, 69–79 (2016).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Enlund, M. et al. The choice of anaesthetic — sevoflurane or propofol — and outcome from cancer surgery: a retrospective analysis. Ups. J. Med. Sci. 119, 251–261 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Alkire, B. C. et al. Global access to surgical care: a modelling study. Lancet Glob. Health 3, e316–e323 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Sullivan, R. et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 12, 933–980 (2011).

    PubMed  Article  Google Scholar 

  25. 25

    Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Rahbari, N. N. et al. Meta-analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology 138, 1714–1726 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Hardingham, J. E. et al. Detection and clinical significance of circulating tumor cells in colorectal cancer — 20 years of progress. Mol. Med. 21 (Suppl. 1), S25–S31 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Martin, O. A., Anderson, R. L., Narayan, K. & MacManus, M. P. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat. Rev. Clin. Oncol. 14, 32–44 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Hayashi, K. et al. Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res. 67, 8223–8228 (2007).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Tvedskov, T. F., Jensen, M.-B., Kroman, N. & Balslev, E. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer. Breast Cancer Res. Treat. 131, 223–229 (2012).

    PubMed  Article  Google Scholar 

  36. 36

    Greco, K. V., Lara, P. F., Oliveira-Filho, R. M., Greco, R. V. & Sudo-Hayashi, L. S. Lymphatic regeneration across an incisional wound: inhibition by dexamethasone and aspirin, and acceleration by a micronized purified flavonoid fraction. Eur. J. Pharmacol. 551, 131–142 (2006).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Swartz, M. A. & Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12, 210–219 (2012).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6, 333–345 (2004).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Carpinteri, S. et al. Peritoneal tumorigenesis and inflammation are ameliorated by humidified-warm carbon dioxide insufflation in the mouse. Ann. Surg. Oncol. 22 (Suppl. 3), S1540–S1547 (2015).

    PubMed  Article  Google Scholar 

  41. 41

    Schott, A. et al. Isolated tumor cells are frequently detectable in the peritoneal cavity of gastric and colorectal cancer patients and serve as a new prognostic marker. Ann. Surg. 227, 372–379 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Green, B. L. et al. Long-term follow-up of the Medical Research Council CLASICC trial of conventional versus laparoscopically assisted resection in colorectal cancer. Br. J. Surg. 100, 75–82 (2013).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Kadar, N. Port-site recurrences following laparoscopic operations for gynaecological malignancies. Br. J. Obstet. Gynaecol. 104, 1308–1313 (1997).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Song, J. et al. Port site metastasis after surgery for renal cell carcinoma: harbinger of future metastasis. J. Urol. 192, 364–368 (2014).

    PubMed  Article  Google Scholar 

  45. 45

    Downey, R. J., McCormack, P. & LoCicero, J. Dissemination of malignant tumors after video-assisted thoracic surgery: a report of twenty-one cases. The Video-Assisted Thoracic Surgery Study Group. J. Thorac. Cardiovasc. Surg. 111, 954–960 (1996).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Berger-Richardson, D. et al. Trends in port-site metastasis after laparoscopic resection of incidental gallbladder cancer: a systematic review. Surgery 161, 618–627 (2017).

    PubMed  Article  Google Scholar 

  47. 47

    Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Zhao, H., Feng, Y., Wang, Y., Yang, B. & Xing, Z. Comparison of different loading dose of celecoxib on postoperative anti-inflammation and analgesia in patients undergoing endoscopic nasal surgery-200 mg is equivalent to 400 mg. Pain Med. 12, 1267–1275 (2011).

    PubMed  Article  Google Scholar 

  52. 52

    Wang, D. & DuBois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Ruan, D. & So, S.-P. Prostaglandin E2 produced by inducible COX-2 and mPGES-1 promoting cancer cell proliferation in vitro and in vivo. Life Sci. 116, 43–50 (2014).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Chang, N., Goodson, W. H., Gottrup, F. & Hunt, T. K. Direct measurement of wound and tissue oxygen tension in postoperative patients. Ann. Surg. 197, 470–478 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Hong, W. X. et al. The role of hypoxia-inducible factor in wound healing. Adv. Wound Care 3, 390–399 (2014).

    Article  Google Scholar 

  56. 56

    Nakazawa, M. S., Keith, B. & Simon, M. C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663–673 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Hayashi, T. et al. Impact of infectious complications on gastric cancer recurrence. Gastr. Cancer 18, 368–374 (2015).

    Article  Google Scholar 

  58. 58

    Murthy, S. M. et al. The influence of surgical trauma on experimental metastasis. Cancer 64, 2035–2044 (1989).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Stanczyk, M., Olszewski, W. L., Gewartowska, M. & Maruszynski, M. Cancer seeding contributes to intestinal anastomotic dehiscence. World J. Surg. Oncol. 11, 302 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Abramovitch, R., Marikovsky, M., Meir, G. & Neeman, M. Stimulation of tumour angiogenesis by proximal wounds: spatial and temporal analysis by MRI. Br. J. Cancer 77, 440–447 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Abramovitch, R., Marikovsky, M., Meir, G. & Neeman, M. Stimulation of tumour growth by wound-derived growth factors. Br. J. Cancer 79, 1392–1398 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Antonio, N. et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 34, 2219–2236 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Tsuchiya, Y. et al. Increased surgical stress promotes tumor metastasis. Surgery 133, 547–555 (2003).

    PubMed  Article  Google Scholar 

  64. 64

    Choi, J. E. et al. Perioperative neutrophil:lymphocyte ratio and postoperative NSAID use as predictors of survival after lung cancer surgery: a retrospective study. Cancer Med. 4, 825–833 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    McSorley, S. T., Watt, D. G., Horgan, P. G. & McMillan, D. C. Postoperative systemic inflammatory response, complication severity, and survival following surgery for colorectal cancer. Ann. Surg. Oncol. 23, 2832–2840 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Desborough, J. P. The stress response to trauma and surgery. Br. J. Anaesth. 85, 109–117 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Sloan, E. K. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042–7052 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Le, C. P. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat. Commun. 7, 10634 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Kim-Fuchs, C. et al. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun. 40, 40–47 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Thaker, P. H. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12, 939–944 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Masur, K., Niggemann, B., Zanker, K. S. & Entschladen, F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by β-blockers. Cancer Res. 61, 2866–2869 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Wolter, J. K. et al. Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 5, 161–172 (2014).

    PubMed  Article  Google Scholar 

  73. 73

    Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  Google Scholar 

  74. 74

    Hassan, S. et al. Behavioral stress accelerates prostate cancer development in mice. J. Clin. Invest. 123, 874–886 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Moretti, S. et al. β-Adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab. Invest. 93, 279–290 (2013).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Chang, A. et al. β2-Adrenoceptors on tumor cells play a critical role in stress-enhanced metastasis in a mouse model of breast cancer. Brain Behav. Immun. 57, 106–115 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Pon, C. K., Lane, J. R., Sloan, E. K. & Halls, M. L. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J. 30, 1144–1154 (2016).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Creed, S. J. et al. β2-adrenoceptor signaling regulates invadopodia formation to enhance tumor cell invasion. Breast Cancer Res. 17, 145 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79

    Kim, T.-H. et al. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J. Cell. Sci. 129, 4563–4575 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    McGeown, J. G. Splanchnic nerve stimulation increases the lymphocyte output in mesenteric efferent lymph. Pflugers Arch. 422, 558–563 (1993).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Hiller, J. G. et al. Neuraxial anesthesia reduces lymphatic flow: proof-of-concept in first in-human study. Anesth. Analg. 123, 1325–1327 (2016).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Koltun, W. A. et al. Awake epidural anesthesia is associated with improved natural killer cell cytotoxicity and a reduced stress response. Am. J. Surg. 171, 68–72 (1996).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Campbell, J. P. et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 10, e1001363 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Chiang, S. P. H., Cabrera, R. M. & Segall, J. E. Tumor cell intravasation. Am. J. Physiol., Cell Physiol. 311, C1–C14 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Lee, S. W., Whelan, R. L., Southall, J. C. & Bessler, M. Abdominal wound tumor recurrence after open and laparoscopic-assisted splenectomy in a murine model. Dis. Colon Rectum 41, 824–831 (1998).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Paramanathan, A., Saxena, A. & Morris, D. L. A systematic review and meta-analysis on the impact of pre-operative neutrophil lymphocyte ratio on long term outcomes after curative intent resection of solid tumours. Surg. Oncol. 23, 31–39 (2014).

    PubMed  Article  Google Scholar 

  89. 89

    Konstantopoulos, K. & McIntire, L. V. Effects of fluid dynamic forces on vascular cell adhesion. J. Clin. Invest. 98, 2661–2665 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Im, J. H. et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 64, 8613–8619 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Benish, M. et al. The marginating-pulmonary immune compartment in mice exhibits increased NK cytotoxicity and unique cellular characteristics. Immunol. Res. 58, 28–39 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Gil-Bernabé, A. M. et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119, 3164–3175 (2012).

    PubMed  Article  CAS  Google Scholar 

  93. 93

    Hu, L., Lee, M., Campbell, W., Perez-Soler, R. & Karpatkin, S. Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 104, 2746–2751 (2004).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Terraube, V., Marx, I. & Denis, C. V. Role of von Willebrand factor in tumor metastasis. Thromb. Res. 120 (Suppl. 2), S64–S70 (2007).

    PubMed  Article  Google Scholar 

  95. 95

    Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458 (2013).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  96. 96

    Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Vlodavsky, I. et al. Heparanase, heparin and the coagulation system in cancer progression. Thromb. Res. 120 (Suppl. 2), S112–S120 (2007).

    PubMed  Article  Google Scholar 

  98. 98

    Nadir, Y. et al. Heparanase induces tissue factor expression in vascular endothelial and cancer cells. J. Thromb. Haemost. 4, 2443–2451 (2006).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Kaplan, R. N., Psaila, B. & Lyden, D. Bone marrow cells in the 'pre-metastatic niche': within bone and beyond. Cancer Metastasis Rev. 25, 521–529 (2006).

    PubMed  Article  Google Scholar 

  100. 100

    Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Pietra, G. et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 72, 1407–1415 (2012).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Eddy, J. L., Krukowski, K., Janusek, L. & Mathews, H. L. Glucocorticoids regulate natural killer cell function epigenetically. Cell. Immunol. 290, 120–130 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Glasner, A. et al. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a β-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J. Immunol. 184, 2449–2457 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Benish, M. et al. Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann. Surg. Oncol. 15, 2042–2052 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Yakar, I. et al. Prostaglandin E2 suppresses NK activity in vivo and promotes postoperative tumor metastasis in rats. Ann. Surg. Oncol. 10, 469–479 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Cata, J. P., Conrad, C. & Rezvani, K. Potential use of natural killer cell transfer therapy in the perioperative period to improve oncologic outcomes. Scientifica 2015, 732438 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107

    Buggy, D. J. et al. Consensus statement from the BJA Workshop on Cancer and Anaesthesia. Br. J. Anaesth. 114, 2–3 (2015).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Barron, T. I., Connolly, R. M., Sharp, L., Bennett, K. & Visvanathan, K. Beta blockers and breast cancer mortality: a population- based study. J. Clin. Oncol. 29, 2635–2644 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Hiller, J. G., Hacking, M. B., Link, E. K., Wessels, K. L. & Riedel, B. J. Perioperative epidural analgesia reduces cancer recurrence after gastro-oesophageal surgery. Acta Anaesthesiol. Scand. 58, 281–290 (2014).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    De Giorgi, V. et al. β-Blocker use and reduced disease progression in patients with thick melanoma: 8 years of follow-up. Melanoma Res. 27, 268–270 (2017).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Léauté-Labrèze, C. et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N. Engl. J. Med. 372, 735–746 (2015).

    PubMed  Article  CAS  Google Scholar 

  112. 112

    Chow, W. et al. Growth attenuation of cutaneous angiosarcoma with propranolol-mediated β-blockade. JAMA Dermatol. 151, 1226–1229 (2015).

    PubMed  Article  Google Scholar 

  113. 113

    Childers, W. K., Hollenbeak, C. S. & Cheriyath, P. β-blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin. Breast Cancer 15, 426–431 (2015).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Zhang, J. et al. Norepinephrine induced epithelial-mesenchymal transition in HT-29 and A549 cells in vitro. J. Cancer Res. Clin. Oncol. 142, 423–435 (2016).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Shaashua, L. et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin. Cancer Res. 23, 4651–4661 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116

    POISE Study Group et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371, 1839–1847 (2008).

  117. 117

    Khadke, V. V., Khadke, S. V. & Khare, A. Oral propranolol — efficacy and comparison of two doses for peri-operative anxiolysis. J. Indian Med. Assoc. 110, 457–460 (2012).

    CAS  PubMed  Google Scholar 

  118. 118

    Day, A. R., Smith, R. V. P., Scott, M. J. P., Fawcett, W. J. & Rockall, T. A. Randomized clinical trial investigating the stress response from two different methods of analgesia after laparoscopic colorectal surgery. Br. J. Surg. 102, 1473–1479 (2015).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Gu, C.-Y., Zhang, J., Qian, Y.-N. & Tang, Q.-F. Effects of epidural anesthesia and postoperative epidural analgesia on immune function in esophageal carcinoma patients undergoing thoracic surgery. Mol. Clin. Oncol. 3, 190–196 (2015).

    PubMed  Article  Google Scholar 

  120. 120

    Xu, F. et al. Clinicopathological and prognostic significance of COX-2 immunohistochemical expression in breast cancer: a meta-analysis. Oncotarget 8, 6003–6012 (2016).

    PubMed Central  PubMed  Google Scholar 

  121. 121

    McGeown, J. G., McHale, N. G. & Thornbury, K. D. The effect of electrical stimulation of the sympathetic chain on peripheral lymph flow in the anaesthetized sheep. J. Physiol. 393, 123–133 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Horowitz, M., Neeman, E., Sharon, E. & Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Lennon, F. E. et al. Overexpression of the μ-opioid receptor in human non-small cell lung cancer promotes Akt and mTOR activation, tumor growth, and metastasis. Anesthesiology 116, 857–867 (2012).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Page, G. G., Blakely, W. P. & Ben-Eliyahu, S. Evidence that postoperative pain is a mediator of the tumor-promoting effects of surgery in rats. Pain 90, 191–199 (2001).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Weng, M. et al. The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: an updated meta-analysis. Oncotarget 7, 15262–15273 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Sun, Y., Li, T. & Gan, T. J. The effects of perioperative regional anesthesia and analgesia on cancer recurrence and survival after oncology surgery: a systematic review and meta-analysis. Reg. Anesth. Pain Med. 40, 589–598 (2015).

    CAS  PubMed  Article  Google Scholar 

  127. 127

    Karnezis, T. et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21, 181–195 (2012).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Hiller, J. G. et al. Impact of celecoxib on inflammation during cancer surgery: a randomized clinical trial. Can. J. Anaesth. 64, 497–505 (2017).

    PubMed  Article  Google Scholar 

  129. 129

    Zhu, Y., Wang, S., Wu, H. & Wu, Y. Effect of perioperative parecoxib on postoperative pain and local inflammation factors PGE2 and IL-6 for total knee arthroplasty: a randomized, double-blind, placebo-controlled study. Eur. J. Orthop. Surg. Traumatol. 24, 395–401 (2013).

    PubMed  Article  Google Scholar 

  130. 130

    Wang, L.-D. et al. Effects of preemptive analgesia with parecoxib sodium on haemodynamics and plasma stress hormones in surgical patients with thyroid carcinoma. Asian Pac. J. Cancer Prev. 16, 3977–3980 (2015).

    PubMed  Article  Google Scholar 

  131. 131

    Ma, W., Wang, K., Du, J., Luan, J. & Lou, G. Multi-dose parecoxib provides an immunoprotective effect by balancing T helper 1 (Th1), Th2, Th17 and regulatory T cytokines following laparoscopy in patients with cervical cancer. Mol. Med. Rep. 11, 2999–3008 (2015).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Shen, J.-C. et al. Flurbiprofen improves dysfunction of T-lymphocyte subsets and natural killer cells in cancer patients receiving post-operative morphine analgesia. Int. J. Clin. Pharmacol. Ther. 52, 669–675 (2014).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Elmets, C. A. et al. Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. J. Natl Cancer Inst. 102, 1835–1844 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Mao, J. T. et al. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res. 4, 984–993 (2011).

    CAS  Article  Google Scholar 

  135. 135

    Lönnroth, C. et al. Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer. Cancer Immun. 8, 5 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. 136

    Sooriakumaran, P. et al. A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res. 29, 1483–1488 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Forget, P. et al. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth. Analg. 110, 1630–1635 (2010).

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Restivo, A. et al. Aspirin as a neoadjuvant agent during preoperative chemoradiation for rectal cancer. Br. J. Cancer 113, 1133–1139 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Yeh, C.-C. et al. Nonsteroidal anti-inflammatory drugs are associated with reduced risk of early hepatocellular carcinoma recurrence after curative liver resection: a nationwide cohort study. Ann. Surg. 261, 521–526 (2015).

    PubMed  Article  Google Scholar 

  140. 140

    Shapiro, J., Jersky, J., Katzav, S., Feldman, M. & Segal, S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J. Clin. Invest. 68, 678–685 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141

    Wu, L., Zhao, H., Wang, T., Pac-Soo, C. & Ma, D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J. Anesth. 28, 740–758 (2014).

    PubMed  Article  Google Scholar 

  142. 142

    Tavare, A. N., Perry, N. J. S., Benzonana, L. L., Takata, M. & Ma, D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int. J. Cancer 130, 1237–1250 (2012).

    CAS  PubMed  Article  Google Scholar 

  143. 143

    Iwasaki, M. et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget 7, 26042–26056 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144

    Huitink, J. M. et al. Volatile anesthetics modulate gene expression in breast and brain tumor cells. Anesth. Analg. 111, 1411–1415 (2010).

    CAS  PubMed  Article  Google Scholar 

  145. 145

    Benzonana, L. L. et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology 119, 593–605 (2013).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Huang, H. et al. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br. J. Cancer 111, 1338–1349 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147

    Luo, X. et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br. J. Anaesth. 114, 831–839 (2015).

    CAS  PubMed  Article  Google Scholar 

  148. 148

    Elena, G. et al. Effects of repetitive sevoflurane anaesthesia on immune response, select biochemical parameters and organ histology in mice. Lab. Anim. 37, 193–203 (2003).

    CAS  PubMed  Article  Google Scholar 

  149. 149

    Desmond, F., McCormack, J., Mulligan, N., Stokes, M. & Buggy, D. J. Effect of anaesthetic technique on immune cell infiltration in breast cancer: a follow-up pilot analysis of a prospective, randomised, investigator-masked study. Anticancer Res. 35, 1311–1319 (2015).

    PubMed  Google Scholar 

  150. 150

    Zhu, M. et al. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability, mobility in vitro and migratory capacity in vivo. Br. J. Anaesth. 116, 870–877 (2016).

    CAS  PubMed  Article  Google Scholar 

  151. 151

    Pandit, J. J. et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br. J. Anaesth. 113, 549–559 (2014).

    CAS  PubMed  Article  Google Scholar 

  152. 152

    Chen, R.-M. et al. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann. NY Acad. Sci. 1042, 262–271 (2005).

    CAS  PubMed  Article  Google Scholar 

  153. 153

    Lee, C.-J., Tai, Y.-T., Lin, Y.-L. & Chen, R.-M. Molecular mechanisms of propofol-involved suppression of no biosynthesis and inducible iNOS gene expression in LPS-stimulated macrophage-like raw 264.7 cells. Shock 33, 93–100 (2010).

    CAS  PubMed  Article  Google Scholar 

  154. 154

    Inada, T., Hirota, K. & Shingu, K. Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation. J. Immunotoxicol. 12, 261–265 (2015).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Markovic-Bozic, J. et al. Effect of propofol and sevoflurane on the inflammatory response of patients undergoing craniotomy. BMC Anesthesiol. 16, 18 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156

    Inada, T. et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia 59, 954–959 (2004).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Melamed, R., Bar-Yosef, S., Shakhar, G., Shakhar, K. & Ben-Eliyahu, S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth. Analg. 97, 1331–1339 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    Wu, K.-C. et al. Suppression of cell invasion and migration by propofol are involved in down-regulating matrix metalloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer Res. 32, 4833–4842 (2012).

    CAS  PubMed  Google Scholar 

  159. 159

    Mammoto, T. et al. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. 184, 165–170 (2002).

    CAS  PubMed  Article  Google Scholar 

  160. 160

    Kushida, A., Inada, T. & Shingu, K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol. Immunotoxicol. 29, 477–486 (2007).

    CAS  PubMed  Article  Google Scholar 

  161. 161

    Lee, J. H., Kang, S. H., Kim, Y., Kim, H. A. & Kim, B. S. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: a retrospective study. Kor. J. Anesthesiol. 69, 126–132 (2016).

    CAS  Article  Google Scholar 

  162. 162

    Mikami, J. et al. Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastr. Cancer 19, 817–826 (2016).

    CAS  Article  Google Scholar 

  163. 163

    Palumbo, J. S. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105, 178–185 (2005).

    CAS  PubMed  Article  Google Scholar 

  164. 164

    Stegeman, I., Bossuyt, P. M., Yu, T., Boyd, C. & Puhan, M. A. Aspirin for primary prevention of cardiovascular disease and cancer. A benefit and harm analysis. PLoS ONE 10, e0127194 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  165. 165

    Lou, X.-L. et al. Interaction between circulating cancer cells and platelets: clinical implication. Chin. J. Cancer Res. 27, 450–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Algra, A. M. & Rothwell, P. M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13, 518–527 (2012).

    CAS  PubMed  Article  Google Scholar 

  167. 167

    Liu, J.-F., Jamieson, G. G., Wu, T.-C., Zhu, G.-J. & Drew, P. A. A preliminary study on the postoperative survival of patients given aspirin after resection for squamous cell carcinoma of the esophagus or adenocarcinoma of the cardia. Ann. Surg. Oncol. 16, 1397–1402 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  168. 168

    Devereaux, P. J. et al. Aspirin in patients undergoing noncardiac surgery. N. Engl. J. Med. 370, 1494–1503 (2014).

    CAS  PubMed  Article  Google Scholar 

  169. 169

    Elwood, P. C. et al. Aspirin in the treatment of cancer: reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS ONE 11, e0152402 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  170. 170

    Tieken, C. & Versteeg, H. H. Anticoagulants versus cancer. Thromb. Res. 140 (Suppl. 1), S148–S153 (2016).

    CAS  PubMed  Article  Google Scholar 

  171. 171

    Niers, T. M. H. et al. Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit. Rev. Oncol. Hematol. 61, 195–207 (2007).

    CAS  PubMed  Article  Google Scholar 

  172. 172

    Taromi, S. et al. PO-33 - Heparin suppresses progression of small cell lung cancer (SCLC) in an orthotopic mouse model. Thromb. Res. 140 (Suppl. 1), S188 (2016).

    PubMed  Article  Google Scholar 

  173. 173

    Mousa, S. A. & Petersen, L. J. Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Thromb. Haemost. 102, 258–267 (2009).

    CAS  PubMed  Article  Google Scholar 

  174. 174

    Van Sluis, G. L. et al. A low molecular weight heparin inhibits experimental metastasis in mice independently of the endothelial glycocalyx. PLoS ONE 5, e11200 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  175. 175

    Bonten, T. N. et al. Effect of β-blockers on platelet aggregation: a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 78, 940–949 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176

    McSorley, S. T., Horgan, P. G. & McMillan, D. C. The impact of the type and severity of postoperative complications on long-term outcomes following surgery for colorectal cancer: a systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 97, 168–177 (2016).

    PubMed  Article  Google Scholar 

  177. 177

    Davis, C. et al. Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009–2013. BMJ 359, j4530 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Australian and New Zealand College of Anaesthetists, The David and Lorelle Skewes Foundation, the Peter Mac Foundation, and the National Cancer Institute (CA160890). N.J.P is the recipient of a Cancer Research UK Clinical Research Fellowship. Work in the G.P lab is supported by the British Journal of Anaesthesia/Royal College of Anaesthetists via the National Institute of Academic Anaesthesia, Cancer Research UK Grand Challenge award (C59824/A25044), and the Institute of Cancer Research.

Author information

Affiliations

Authors

Contributions

J.G.H, N.J.P, B.R, and E.K.S researched data for the article. All authors wrote, reviewed, and edited the manuscript before submission. J.G.H and N.J.P contributed equally.

Corresponding author

Correspondence to Bernhard Riedel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiller, J., Perry, N., Poulogiannis, G. et al. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol 15, 205–218 (2018). https://doi.org/10.1038/nrclinonc.2017.194

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing