Surgical oncology for gliomas: the state of the art

Key Points

  • Surgery remains the mainstay treatment of gliomas, with maximal resection of the tumour being central to achieving long-term disease control; growing evidence supports efforts to undertake more-extensive 'supratotal' resection

  • The real clinical benefit of glioma surgery depends, however, on the balance between the extent of cytoreduction and neurological morbidity; novel surgical techniques and technologies can be leveraged to improve both of these determinants of patient outcomes

  • Advanced intraoperative imaging methods (such as intraoperative neuronavigation, MRI, and ultrasonography), fluorescence-based tumour biomarkers, and real-time mutational analyses can be exploited to maximize tumour resection

  • In parallel, the risk of perioperative morbidity can be minimized through the combined use of corticospinal tract imaging (MRI-based diffusion tensor imaging tractography and transcranial magnetic stimulation), stimulation mapping, and/or somatosensory-evoked potential techniques

  • Together, these technological advances and modern principles of neurosurgical oncology have dramatically altered the approach to the treatment of patients with glioma and have enabled improvements in clinical outcomes

Abstract

Surgical resection remains the mainstay of treatment for patients with glioma of any grade. Maximal resection of the tumour is central to achieving long-term disease control; however, the relationship between the extent of glioma resection and actual clinical benefit for the patient is predicated on the balance between cytoreduction and neurological morbidity. For the neurosurgical oncologist, the clinical rationale for undertaking increasingly extensive resections has gained traction. In parallel, novel surgical techniques and technologies have been developed that help improve patient outcomes. During the past decade, neurosurgeons have leveraged advanced intraoperative imaging methods, fluorescence-based tumour biomarkers, and real-time mutational analyses to maximize the extent of tumour resection. In addition, approaches to minimizing the risk of perioperative morbidity continue to be improved through the combined use of stimulation-mapping techniques, corticospinal tract imaging, and stereotactic thermal ablation. Taken together, these modern principles of neurosurgical oncology bear little resemblance to historical therapeutic strategies for patients with glioma and have dramatically altered the approach to the treatment of patients with these brain tumours. Herein, we outline the state of the art in surgical oncology for gliomas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Brain shift and other artefactual effects during intraoperative MRI for brain tumour surgery.
Figure 2: A clinical case study demonstrating the use of intraoperative confocal microscopy for fluorescence-guided surgery.
Figure 3: Preoperative diffusion tensor imaging (DTI) tractography and transcranial magnetic stimulation (TMS) mapping for neuronavigation.
Figure 4: Intraoperative cortical stimulation mapping and somatosensory phase-reversal techniques.
Figure 5: Negative language sites within the dominant hemisphere.
Figure 6: Laser ablation technologies for minimally invasive tumour targeting.

References

  1. 1

    Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 18 (Suppl. 5), v1–v75 (2016).

    PubMed  Google Scholar 

  2. 2

    Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Sanai, N., Chang, S. & Berger, M. S. Low-grade gliomas in adults. J. Neurosurg. 115, 948–965 (2011).

    PubMed  Google Scholar 

  4. 4

    Sanai, N. & Berger, M. S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 62, 753–764 (2008).

    PubMed  Google Scholar 

  5. 5

    Reifenberger, G., Wirsching, H. G., Knobbe-Thomsen, C. B. & Weller, M. Advances in the molecular genetics of gliomas — implications for classification and therapy. Nat. Rev. Clin. Oncol. 14, 434–452 (2017).

    CAS  PubMed  Google Scholar 

  6. 6

    Guthrie, B. L. & Laws, E. R. Jr. Supratentorial low-grade gliomas. Neurosurg. Clin. N. Am. 1, 37–48 (1990).

    CAS  PubMed  Google Scholar 

  7. 7

    Bauman, G. et al. Pretreatment factors predict overall survival for patients with low-grade glioma: a recursive partitioning analysis. Int. J. Radiat. Oncol. Biol. Phys. 45, 923–929 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Janny, P. et al. Low grade supratentorial astrocytomas. Management and prognostic factors. Cancer 73, 1937–1945 (1994).

    CAS  PubMed  Google Scholar 

  9. 9

    Karim, A. B. et al. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int. J. Radiat. Oncol. Biol. Phys. 36, 549–556 (1996).

    CAS  PubMed  Google Scholar 

  10. 10

    Laws, E. R. et al. The neurosurgical management of low-grade astrocytoma. Clin. Neurosurg. 33, 575–588 (1986).

    PubMed  Google Scholar 

  11. 11

    Lote, K. et al. Survival, prognostic factors, and therapeutic efficacy in low-grade glioma: a retrospective study in 379 patients. J. Clin. Oncol. 15, 3129–3140 (1997).

    CAS  PubMed  Google Scholar 

  12. 12

    Piepmeier, J. et al. Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. Neurosurgery 38, 872–878 (1996).

    CAS  PubMed  Google Scholar 

  13. 13

    Pignatti, F. et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J. Clin. Oncol. 20, 2076–2084 (2002).

    PubMed  Google Scholar 

  14. 14

    Shaw, E. et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J. Clin. Oncol. 20, 2267–2276 (2002).

    CAS  PubMed  Google Scholar 

  15. 15

    van den Bent, M. J. et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366, 985–990 (2005).

    CAS  PubMed  Google Scholar 

  16. 16

    Pallud, J. et al. Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137, 449–462 (2014).

    PubMed  Google Scholar 

  17. 17

    Ramakrishna, R., Hebb, A., Barber, J., Rostomily, R. & Silbergeld, D. Outcomes in reoperated low-grade gliomas. Neurosurgery 77, 175–184 (2015).

    PubMed  Google Scholar 

  18. 18

    Smith, J. S. et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J. Clin. Oncol. 26, 1338–1345 (2008).

    PubMed  Google Scholar 

  19. 19

    Ius, T. et al. Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients: clinical article. J. Neurosurg. 117, 1039–1052 (2012).

    PubMed  Google Scholar 

  20. 20

    Capelle, L. et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J. Neurosurg. 118, 1157–1168 (2013).

    PubMed  Google Scholar 

  21. 21

    Xu, D. S. et al. An extent of resection threshold for seizure freedom in patients with low-grade gliomas. J. Neurosurg. 26, 1–7 (2017).

    CAS  Google Scholar 

  22. 22

    Yordanova, Y. N. & Duffau, H. Supratotal resection of diffuse gliomas — an overview of its multifaceted implications. Neurochirurgie 63, 243–249 (2017).

    CAS  PubMed  Google Scholar 

  23. 23

    Jakola, A. S. et al. Comparison of a strategy favoring early surgical resection versus a strategy favoring watchful waiting in low-grade gliomas. JAMA 308, 1881–1888 (2012).

    CAS  PubMed  Google Scholar 

  24. 24

    Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    CAS  PubMed  Google Scholar 

  25. 25

    Stummer, W. et al. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J. Neurosurg. 114, 613–623 (2011).

    PubMed  Google Scholar 

  26. 26

    Stummer, W. et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62, 564–576 (2008).

    PubMed  Google Scholar 

  27. 27

    Brown, T. J. et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2, 1460–1469 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Hrabalek, L. et al. Resection versus biopsy of glioblastomas in eloquent brain areas. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 159, 150–155 (2015).

    PubMed  Google Scholar 

  29. 29

    Kreth, F. W. et al. The role of tumor resection in the treatment of glioblastoma multiforme in adults. Cancer 86, 2117–2123 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Li, Y. M., Suki, D., Hess, K. & Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 124, 977–988 (2016).

    PubMed  Google Scholar 

  31. 31

    Sanai, N., Polley, M. Y., McDermott, M. W., Parsa, A. T. & Berger, M. S. An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 115, 3–8 (2011).

    PubMed  Google Scholar 

  32. 32

    Lacroix, M. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95, 190–198 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Pessina, F. et al. Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J. Neurooncol. 135, 129–139 (2017).

    PubMed  Google Scholar 

  34. 34

    Chaichana, K. L. et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 16, 113–122 (2014).

    PubMed  Google Scholar 

  35. 35

    Oppenlander, M. E. et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J. Neurosurg. 120, 846–853 (2014).

    PubMed  Google Scholar 

  36. 36

    Warnke, P. C. Stereotactic volumetric resection of gliomas. Acta Neurochir. Suppl. 88, 5–8 (2003).

    CAS  PubMed  Google Scholar 

  37. 37

    Krishnan, R. et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55, 904–914 (2004).

    PubMed  Google Scholar 

  38. 38

    Wu, J. S. et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61, 935–948 (2007).

    PubMed  Google Scholar 

  39. 39

    Reithmeier, T., Krammer, M., Gumprecht, H., Gerstner, W. & Lumenta, C. B. Neuronavigation combined with electrophysiological monitoring for surgery of lesions in eloquent brain areas in 42 cases: a retrospective comparison of the neurological outcome and the quality of resection with a control group with similar lesions. Minim. Invasive Neurosurg. 46, 65–71 (2003).

    CAS  PubMed  Google Scholar 

  40. 40

    Kurimoto, M. et al. Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study. Minim. Invasive Neurosurg. 47, 278–283 (2004).

    CAS  PubMed  Google Scholar 

  41. 41

    Willems, P. W., Taphoorn, M. J., Burger, H., Berkelbach van der Sprenkel, J. W. & Tulleken, C. A. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J. Neurosurgery 104, 360–368 (2006).

    Google Scholar 

  42. 42

    Unsgaard, G. et al. Ability of navigated 3D ultrasound to delineate gliomas and metastases — comparison of image interpretations with histopathology. Acta Neurochir. 147, 1259–1269 (2005).

    CAS  PubMed  Google Scholar 

  43. 43

    Coenen, V. A. et al. Sequential visualization of brain and fiber tract deformation during intracranial surgery with three-dimensional ultrasound: an approach to evaluate the effect of brain shift. Neurosurgery 56, 133–141 (2005).

    PubMed  Google Scholar 

  44. 44

    Reinacher, P. C. & van Velthoven, V. Intraoperative ultrasound imaging: practical applicability as a real-time navigation system. Acta Neurochir. Suppl. 85, 89–93 (2003).

    CAS  PubMed  Google Scholar 

  45. 45

    Nikas, D. C. et al. Coregistered intraoperative ultrasonography in resection of malignant glioma. Neurosurg. Focus 14, e6 (2003).

    PubMed  Google Scholar 

  46. 46

    Senft, C., Seifert, V., Hermann, E., Franz, K. & Gasser, T. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery. Neurosurgery 63, 257–266 (2008).

    PubMed  Google Scholar 

  47. 47

    Nimsky, C., Fujita, A., Ganslandt, O., Von Keller, B. & Fahlbusch, R. Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55, 358–370 (2004).

    PubMed  Google Scholar 

  48. 48

    Hall, W. A., Liu, H., Maxwell, R. E. & Truwit, C. L. Influence of 1.5-Tesla intraoperative MR imaging on surgical decision making. Acta Neurochir. Suppl. 85, 29–37 (2003).

    CAS  PubMed  Google Scholar 

  49. 49

    Hirschberg, H., Samset, E., Hol, P. K., Tillung, T. & Lote, K. Impact of intraoperative MRI on the surgical results for high-grade gliomas. Minim. Invasive Neurosurg. 48, 77–84 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Senft, C., Bink, A., Heckelmann, M., Gasser, T. & Seifert, V. Glioma extent of resection and ultra-low-field iMRI: interim analysis of a prospective randomized trial. Acta Neurochir. Suppl. 109, 49–53 (2011).

    PubMed  Google Scholar 

  51. 51

    Hatiboglu, M. A. et al. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery 64, 1073–1081 (2009).

    PubMed  Google Scholar 

  52. 52

    Pamir, M. N. et al. First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in low-grade glioma resection. J. Neurosurg. 112, 57–69 (2010).

    PubMed  Google Scholar 

  53. 53

    Black, P. M. et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45, 423–431 (1999).

    CAS  PubMed  Google Scholar 

  54. 54

    Claus, E. B. et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103, 1227–1233 (2005).

    PubMed  Google Scholar 

  55. 55

    Barone, D. G., Lawrie, T. A. & Hart, M. G. Image guided surgery for the resection of brain tumours. Cochrane Database Syst. Rev. 1, CD009685 (2014).

    Google Scholar 

  56. 56

    Senft, C. et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 12, 997–1003 (2011).

    PubMed  Google Scholar 

  57. 57

    Nimsky, C., Ganslandt, O., Tomandl, B., Buchfelder, M. & Fahlbusch, R. Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur. Radiol. 12, 2690–2703 (2002).

    PubMed  Google Scholar 

  58. 58

    Muragaki, Y. et al. Information-guided surgical management of gliomas using low-field-strength intraoperative MRI. Acta Neurochir. Suppl. 109, 67–72 (2011).

    PubMed  Google Scholar 

  59. 59

    Kubben, P. L. et al. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 12, 1062–1070 (2011).

    PubMed  Google Scholar 

  60. 60

    Schneider, J. P. et al. Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme — a quantitative radiological analysis. Neuroradiology 47, 489–500 (2005).

    PubMed  Google Scholar 

  61. 61

    Chandler, W. F., Knake, J. E., McGillicuddy, J. E., Lillehei, K. O. & Silver, T. M. Intraoperative use of real-time ultrasonography in neurosurgery. J. Neurosurg. 57, 157–163 (1982).

    CAS  PubMed  Google Scholar 

  62. 62

    Prada, F. et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74, 542–552 (2014).

    PubMed  Google Scholar 

  63. 63

    Gerganov, V. M. et al. Reliability of intraoperative high-resolution 2D ultrasound as an alternative to high-field strength MR imaging for tumor resection control: a prospective comparative study. J. Neurosurg. 111, 512–519 (2009).

    PubMed  Google Scholar 

  64. 64

    Coburger, J. et al. Navigated high frequency ultrasound: description of technique and clinical comparison with conventional intracranial ultrasound. World Neurosurg. 82, 366–375 (2014).

    PubMed  Google Scholar 

  65. 65

    Solheim, O., Selbekk, T., Jakola, A. S. & Unsgard, G. Ultrasound-guided operations in unselected high-grade gliomas — overall results, impact of image quality and patient selection. Acta Neurochir. 152, 1873–1886 (2010).

    PubMed  Google Scholar 

  66. 66

    Stummer, W. et al. Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir. 140, 995–1000 (1998).

    CAS  PubMed  Google Scholar 

  67. 67

    Duffner, F. et al. Specific intensity imaging for glioblastoma and neural cell cultures with 5-aminolevulinic acid-derived protoporphyrin IX. J. Neurooncol. 71, 107–111 (2005).

    CAS  PubMed  Google Scholar 

  68. 68

    Stummer, W., Reulen, H. J., Novotny, A., Stepp, H. & Tonn, J. C. Fluorescence-guided resections of malignant gliomas — an overview. Acta Neurochir. Suppl. 88, 9–12 (2003).

    CAS  PubMed  Google Scholar 

  69. 69

    Ishihara, R. et al. Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas. Neurol. Med. Chir. 47, 53–57 (2007).

    Google Scholar 

  70. 70

    Zhang, R. R. et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Floeth, F. W. et al. Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur. J. Nucl. Med. Mol. Imag. 38, 731–741 (2010).

    Google Scholar 

  72. 72

    Sanai, N. et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J. Neurosurg. 115, 740–748 (2011).

    CAS  PubMed  Google Scholar 

  73. 73

    Sanai, N. et al. Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery 68, 282–290 (2011).

    PubMed  Google Scholar 

  74. 74

    Sankar, T. et al. Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model. Neurosurgery 66, 410–417 (2010).

    PubMed  Google Scholar 

  75. 75

    Eberlin, L. S. et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl Acad. Sci. USA 110, 1611–1616 (2013).

    PubMed  Google Scholar 

  76. 76

    Gholami, B., Agar, N. Y., Jolesz, F. A., Haddad, W. M. & Tannenbaum, A. R. A compressive sensing approach for glioma margin delineation using mass spectrometry. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 5682–5685 (2011).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Shankar, G. M. et al. Rapid intraoperative molecular characterization of glioma. JAMA Oncol. 1, 662–667 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Kanamori, M. et al. Rapid and sensitive intraoperative detection of mutations in the isocitrate dehydrogenase 1 and 2 genes during surgery for glioma. J. Neurosurg. 120, 1288–1297 (2014).

    CAS  PubMed  Google Scholar 

  79. 79

    Kim, C. S. et al. Characterization of invading glioma cells using molecular analysis of leading-edge tissue. J. Kor. Neurosurg. Soc. 50, 157–165 (2011).

    Google Scholar 

  80. 80

    Alexiou, G. A. et al. Fast cell cycle analysis for intraoperative characterization of brain tumor margins and malignancy. J. Clin. Neurosci. 22, 129–132 (2015).

    PubMed  Google Scholar 

  81. 81

    Rennert, R. C., Santiago-Dieppa, D. R., Figueroa, J., Sanai, N. & Carter, B. S. Future directions of operative neuro-oncology. J. Neurooncol. 130, 377–382 (2016).

    PubMed  Google Scholar 

  82. 82

    Beiko, J. et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 16, 81–91 (2014).

    CAS  PubMed  Google Scholar 

  83. 83

    Mazor, T., Pankov, A., Song, J. S. & Costello, J. F. Intratumoral heterogeneity of the epigenome. Cancer Cell 29, 440–451 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Wahl, M. et al. Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neuro Oncol. 19, 242–251 (2016).

    PubMed Central  Google Scholar 

  85. 85

    Kunwar, S. et al. Phase III randomized trial of CED of IL13-PE38QQR versus Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 12, 871–881 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Brem, H. et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J. Neurosurg. 74, 441–446 (1991).

    CAS  PubMed  Google Scholar 

  87. 87

    Prados, M. D. et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int. J. Radiat. Oncol. Biol. Phys. 24, 593–597 (1992).

    CAS  PubMed  Google Scholar 

  88. 88

    Cloughesy, T. F. et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci. Transl Med. 8, 341ra75 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Tetard, M. C. et al. Interstitial 5-ALA photodynamic therapy and glioblastoma: preclinical model development and preliminary results. Photodiagnosis Photodyn. Ther. 13, 218–224 (2016).

    CAS  PubMed  Google Scholar 

  90. 90

    LoRusso, P. M. Phase 0 clinical trials: an answer to drug development stagnation? J. Clin. Oncol. 27, 2586–2588 (2009).

    CAS  PubMed  Google Scholar 

  91. 91

    Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C. & Mori, S. Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004).

    PubMed  Google Scholar 

  92. 92

    Mickevicius, N. J. et al. Location of brain tumor intersecting white matter tracts predicts patient prognosis. J. Neurooncol. 125, 393–400 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Nimsky, C., Bauer, M. & Carl, B. Merits and limits of tractography techniques for the uninitiated. Adv. Tech. Stand. Neurosurg. 43, 37–60 (2016).

    Google Scholar 

  94. 94

    McDonald, C. R. et al. Recovery of white matter tracts in regions of peritumoral FLAIR hyperintensity with use of restriction spectrum imaging. AJNR Am. J. Neuroradiol. 34, 1157–1163 (2013).

    CAS  PubMed  Google Scholar 

  95. 95

    Picht, T. Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery. CNS Oncol. 3, 299–310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Picht, T., Frey, D., Thieme, S., Kliesch, S. & Vajkoczy, P. Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study. J. Neurooncol. 126, 535–543 (2016).

    PubMed  Google Scholar 

  97. 97

    Frey, D. et al. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro Oncol. 16, 1365–1372 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Picht, T., Schulz, J. & Vajkoczy, P. The preoperative use of navigated transcranial magnetic stimulation facilitates early resection of suspected low-grade gliomas in the motor cortex. Acta Neurochir. 155, 1813–1821 (2013).

    PubMed  Google Scholar 

  99. 99

    Krieg, S. M. et al. Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro Oncol. 16, 1274–1282 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Coburger, J. et al. Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg. Rev. 36, 65–75 (2013).

    PubMed  Google Scholar 

  101. 101

    Ranck, J. B. Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98, 417–440 (1975).

    PubMed  Google Scholar 

  102. 102

    Kunieda, T., Yamao, Y., Kikuchi, T. & Matsumoto, R. New approach for exploring cerebral functional connectivity: review of cortico-cortical evoked potential. Neurol. Med. Chir. 55, 374–382 (2015).

    Google Scholar 

  103. 103

    Haglund, M. M., Ojemann, G. A. & Blasdel, G. G. Optical imaging of bipolar cortical stimulation. J. Neurosurg. 78, 785–793 (1993).

    CAS  PubMed  Google Scholar 

  104. 104

    Herholz, K. et al. Individual functional anatomy of verb generation. Neuroimage 3, 185–194 (1996).

    CAS  PubMed  Google Scholar 

  105. 105

    Ojemann, G., Ojemann, J., Lettich, E. & Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989).

    CAS  PubMed  Google Scholar 

  106. 106

    Ojemann, G. A. & Whitaker, H. A. Language localization and variability. Brain Lang. 6, 239–260 (1978).

    CAS  PubMed  Google Scholar 

  107. 107

    Ojemann, G. A. Individual variability in cortical localization of language. J. Neurosurg. 50, 164–169 (1979).

    CAS  PubMed  Google Scholar 

  108. 108

    Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Ojemann, J. G., Miller, J. W. & Silbergeld, D. L. Preserved function in brain invaded by tumor. Neurosurgery 39, 253–258 (1996).

    CAS  PubMed  Google Scholar 

  110. 110

    Seitz, R. J. et al. Large-scale plasticity of the human motor cortex. Neuroreport 6, 742–744 (1995).

    CAS  PubMed  Google Scholar 

  111. 111

    Wunderlich, G. et al. Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery 42, 18–26 (1998).

    CAS  PubMed  Google Scholar 

  112. 112

    Robles, S. G., Gatignol, P., Lehericy, S. & Duffau, H. Long-term brain plasticity allowing a multistage surgical approach to World Health Organization grade II gliomas in eloquent areas. J. Neurosurg. 109, 615–624 (2008).

    PubMed  Google Scholar 

  113. 113

    Duffau, H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J. Clin. Neurosci. 13, 885–897 (2006).

    PubMed  Google Scholar 

  114. 114

    Duffau, H., Taillandier, L., Gatignol, P. & Capelle, L. The insular lobe and brain plasticity: Lessons from tumor surgery. Clin. Neurol. Neurosurg. 108, 543–548 (2006).

    PubMed  Google Scholar 

  115. 115

    Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E. & Duffau, H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited. Brain 137, 2773–2782 (2014).

    PubMed  Google Scholar 

  116. 116

    Chang, E. F. et al. Stereotactic probability and variability of speech arrest and anomia sites during stimulation mapping of the language dominant hemisphere. J. Neurosurg. 126, 114–121 (2016).

    PubMed  Google Scholar 

  117. 117

    Quinones-Hinojosa, A., Ojemann, S. G., Sanai, N., Dillon, W. P. & Berger, M. S. Preoperative correlation of intraoperative cortical mapping with magnetic resonance imaging landmarks to predict localization of the Broca area. J. Neurosurg. 99, 311–318 (2003).

    PubMed  Google Scholar 

  118. 118

    Seghier, M. L. et al. Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum. Brain Mapp. 23, 140–155 (2004).

    PubMed  Google Scholar 

  119. 119

    Tzourio-Mazoyer, N., Josse, G., Crivello, F. & Mazoyer, B. Interindividual variability in the hemispheric organization for speech. Neuroimage 21, 422–435 (2004).

    CAS  PubMed  Google Scholar 

  120. 120

    Turkeltaub, P. E., Eden, G. F., Jones, K. M. & Zeffiro, T. A. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765–780 (2002).

    PubMed  Google Scholar 

  121. 121

    Tzourio, N., Crivello, F., Mellet, E., Nkanga-Ngila, B. & Mazoyer, B. Functional anatomy of dominance for speech comprehension in left handers versus right handers. Neuroimage 8, 1–16 (1998).

    CAS  PubMed  Google Scholar 

  122. 122

    Dehaene, S. et al. Anatomical variability in the cortical representation of first and second language. Neuroreport 8, 3809–3815 (1997).

    CAS  PubMed  Google Scholar 

  123. 123

    Steinmetz, H. & Seitz, R. J. Functional anatomy of language processing: neuroimaging and the problem of individual variability. Neuropsychologia 29, 1149–1161 (1991).

    CAS  PubMed  Google Scholar 

  124. 124

    Josse, G., Herve, P. Y., Crivello, F., Mazoyer, B. & Tzourio-Mazoyer, N. Hemispheric specialization for language: brain volume matters. Brain Res. 1068, 184–193 (2006).

    CAS  PubMed  Google Scholar 

  125. 125

    FitzGerald, D. B. et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am. J. Neuroradiol. 18, 1529–1539 (1997).

    CAS  PubMed  Google Scholar 

  126. 126

    Skirboll, S. S., Ojemann, G. A., Berger, M. S., Lettich, E. & Winn, H. R. Functional cortex and subcortical white matter located within gliomas. Neurosurgery 38, 678–684 (1996).

    CAS  PubMed  Google Scholar 

  127. 127

    Duffau, H. Stimulation mapping of white matter tracts to study brain functional connectivity. Nat. Rev. Neurol. 11, 255–265 (2015).

    PubMed  Google Scholar 

  128. 128

    Moritz-Gasser, S., Herbet, G., Maldonado, I. L. & Duffau, H. Lexical access speed is significantly correlated with the return to professional activities after awake surgery for low-grade gliomas. J. Neurooncol. 107, 633–641 (2012).

    PubMed  Google Scholar 

  129. 129

    Wengenroth, M. et al. Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur. Radiol. 21, 1517–1525 (2011).

    PubMed  PubMed Central  Google Scholar 

  130. 130

    Cochereau, J. et al. Comparison between resting state fMRI networks and responsive cortical stimulations in glioma patients. Hum. Brain Mapp. 37, 3721–3732 (2016).

    PubMed  Google Scholar 

  131. 131

    Romstock, J., Fahlbusch, R., Ganslandt, O., Nimsky, C. & Strauss, C. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J. Neurol. Neurosurg. Psychiatry. 72, 221–229 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Sanai, N., Mirzadeh, Z. & Berger, M. S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 358, 18–27 (2008).

    CAS  PubMed  Google Scholar 

  133. 133

    Taylor, M. D. & Bernstein, M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J. Neurosurg. 90, 35–41 (1999).

    CAS  PubMed  Google Scholar 

  134. 134

    Rolston, J. D. et al. Frontal operculum gliomas: language outcome following resection. J. Neurosurg. 122, 725–734 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Duffau, H. et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J. Neurol. Neurosurg. Psychiatry. 74, 901–907 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Thiel, A. et al. Plasticity of language networks in patients with brain tumors: a positron emission tomography activation study. Ann. Neurol. 50, 620–629 (2001).

    CAS  PubMed  Google Scholar 

  137. 137

    Duffau, H., Bauchet, L., Lehericy, S. & Capelle, L. Functional compensation of the left dominant insula for language. Neuroreport 12, 2159–2163 (2001).

    CAS  PubMed  Google Scholar 

  138. 138

    Fandino, J., Kollias, S. S., Wieser, H. G., Valavanis, A. & Yonekawa, Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J. Neurosurg. 91, 238–250 (1999).

    CAS  PubMed  Google Scholar 

  139. 139

    Southwell, D. G., Hervey-Jumper, S. L., Perry, D. W. & Berger, M. S. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J. Neurosurg. 124, 1460–1469 (2016).

    PubMed  Google Scholar 

  140. 140

    De Witt Hamer, P. C., Gil Robles, S., Zwinderman, A. H., Duffau, H. & Berger, M. S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J. Clin. Oncol. 30, 2559–2565 (2012).

    PubMed  Google Scholar 

  141. 141

    Klein, M., Duffau, H. & De Witt Hamer, P. C. Cognition and resective surgery for diffuse infiltrative glioma: an overview. J. Neurooncol. 108, 309–318 (2012).

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Klein, M. Health-related quality of life aspects in patients with low-grade glioma. Adv. Tech. Stand. Neurosurg. 35, 213–235 (2010).

    CAS  PubMed  Google Scholar 

  143. 143

    Cochereau, J., Herbet, G. & Duffau, H. Patients with incidental WHO grade II glioma frequently suffer from neuropsychological disturbances. Acta Neurochir. 158, 305–312 (2016).

    PubMed  Google Scholar 

  144. 144

    Salcman, M. & Samaras, G. M. Hyperthermia for brain tumors: biophysical rationale. Neurosurgery 9, 327–335 (1981).

    CAS  PubMed  Google Scholar 

  145. 145

    Voigt, J. D. & Barnett, G. The value of using a brain laser interstitial thermal therapy (LITT) system in patients presenting with high grade gliomas where maximal safe resection may not be feasible. Cost. Eff. Resour. Alloc. 14, 6 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. 146

    Patel, P., Patel, N. V. & Danish, S. F. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system. J. Neurosurg. 125, 853–860 (2016).

    PubMed  Google Scholar 

  147. 147

    Gasser, T. et al. Intraoperative functional MRI: implementation and preliminary experience. NeuroImage 26, 685–693 (2005).

    PubMed  Google Scholar 

  148. 148

    Abernethy, L. J., Avula, S., Hughes, G. M., Wright, E. J. & Mallucci, C. L. Intra-operative 3-T MRI for paediatric brain tumours: challenges and perspectives. Pediatr. Radiol. 42, 147–157 (2012).

    CAS  PubMed  Google Scholar 

  149. 149

    Caverzasi, E. et al. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas. J. Neurosurg. 125, 33–45 (2016).

    PubMed  Google Scholar 

  150. 150

    Paiva, W. S., Fonoff, E. T., Marcolin, M. A., Cabrera, H. N. & Teixeira, M. J. Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery. Neuropsychiatr. Dis. Treat. 8, 197–201 (2012).

    PubMed  PubMed Central  Google Scholar 

  151. 151

    Hayashi, Y., Nakada, M., Kinoshita, M. & Hamada, J-i. Functional reorganization in the patient with progressing glioma of the pure primary motor cortex: a case report with special reference to the topographic central sulcus defined by somatosensory-evoked potential. World Neurosurg. 82, 536.e1–536.e4 (2014).

    Google Scholar 

  152. 152

    Mohammadi, A. M. et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 3, 971–979 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. 153

    Thomas, J. G., Rao, G., Kew, Y. & Prabhu, S. S. Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma. Neurosurg. Focus 41, E12 (2016).

    PubMed  Google Scholar 

  154. 154

    Pessina, F. et al. Value of surgical resection in patients with newly diagnosed grade III glioma treated in a multimodal approach: surgery, chemotherapy and radiotherapy. Ann. Surg. Oncol. 23, 3040–3046 (2016).

    PubMed  Google Scholar 

  155. 155

    Snyder, L. A. et al. The impact of extent of resection on malignant transformation of pure oligodendrogliomas. J. Neurosurg. 120, 309–314 (2014).

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

N.S. researched the data for the article. Both authors contributed to discussions of content and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Mitchel S. Berger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanai, N., Berger, M. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol 15, 112–125 (2018). https://doi.org/10.1038/nrclinonc.2017.171

Download citation

Further reading