Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chimeric antigen receptor T-cell therapy — assessment and management of toxicities

Key Points

  • Chimeric antigen receptor (CAR)-T-cell therapy is a promising approach for the treatment of refractory malignancies, but is associated with unique acute toxicities that need specialized monitoring and management

  • Cytokine-release syndrome (CRS) and CAR-T-cell-related encephalopathy syndrome (CRES) are the most-common toxicities observed after CAR-T-cell therapy and, rarely, CRS can evolve into fulminant haemophagocytic lymphohistiocytosis (HLH)

  • Intensive monitoring, accurate grading, and prompt management of toxicities with aggressive supportive care, anti-IL-6 therapy, and/or corticosteroids for severe cases could reduce the morbidity and mortality associated with CAR-T-cell therapy

  • The guidelines proposed could also be used for grading and management of toxicities associated with other redirected-T-cell therapies, such as TCR-gene therapies and bispecific T-cell-engaging antibody (BiTE) therapies

Abstract

Immunotherapy using T cells genetically engineered to express a chimeric antigen receptor (CAR) is rapidly emerging as a promising new treatment for haematological and non-haematological malignancies. CAR-T-cell therapy can induce rapid and durable clinical responses, but is associated with unique acute toxicities, which can be severe or even fatal. Cytokine-release syndrome (CRS), the most commonly observed toxicity, can range in severity from low-grade constitutional symptoms to a high-grade syndrome associated with life-threatening multiorgan dysfunction; rarely, severe CRS can evolve into fulminant haemophagocytic lymphohistiocytosis (HLH). Neurotoxicity, termed CAR-T-cell-related encephalopathy syndrome (CRES), is the second most-common adverse event, and can occur concurrently with or after CRS. Intensive monitoring and prompt management of toxicities is essential to minimize the morbidity and mortality associated with this potentially curative therapeutic approach; however, algorithms for accurate and consistent grading and management of the toxicities are lacking. To address this unmet need, we formed a CAR-T-cell-therapy-associated TOXicity (CARTOX) Working Group, comprising investigators from multiple institutions and medical disciplines who have experience in treating patients with various CAR-T-cell therapy products. Herein, we describe the multidisciplinary approach adopted at our institutions, and provide recommendations for monitoring, grading, and managing the acute toxicities that can occur in patients treated with CAR-T-cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical case study.
Figure 2: Three-step approach to the assessment and management of acute toxicities associated with chimeric antigen receptor (CAR)-T-cell therapy.
Figure 3: Recommendations for the management of Chimeric antigen receptor (CAR)-T-cell-related haemophagocytic lymphohistiocytosis/macrophage-<>activation syndrome (HLH/MAS).

Similar content being viewed by others

References

  1. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. June, C. H., Riddell, S. R. & Schumacher, T. N. Adoptive cellular therapy: a race to the finish line. Sci. Transl Med. 7, 280ps7 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl Med. 5, 177ra138 (2013).

    Article  CAS  Google Scholar 

  7. Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl Med. 6, 224ra225 (2014).

    Article  CAS  Google Scholar 

  11. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Garfall, A. L. et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med. 373, 1040–1047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fraietta, J. A. et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127, 1117–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brudno, J. N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kebriaei, P. et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 126, 3363–3376 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Turtle, C. J. et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Turtle, C. J. et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2017.72.8519 (2017).

  20. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 Chimeric antigen receptor t cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinrichs, C. S. & Rosenberg, S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol. Rev. 257, 56–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kochenderfer, J. N. et al. B-Cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Locke, F. L. et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T Cell therapy in refractory aggressive lymphoma. Mol. Ther. 25, 285–295 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neelapu, S. S. et al. KTE-C19 (anti-CD19 CAR T cells) induces complete remissions in patients with refractory diffuse large B-cell lymphoma (DLBCL): results from the pivotal phase 2 ZUMA-1 [abstract]. Blood 128, LBA-6 (2016).

    Google Scholar 

  25. Grupp, S. A. et al. Analysis of a Global registration trial of the efficacy and safety of CTL019 in pediatric and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL) [abstract]. Blood 128, 221 (2016).

    Google Scholar 

  26. Schuster, S. J. et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) — an interim analysis [abstract]. Hematol. Oncol. 35 (Suppl. S2), 27 (2017).

    Article  Google Scholar 

  27. Neelapu, S. S. et al. Axicabtagene ciloleucel (Axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphomas (NHL): primary results of the pivotal trial ZUMA-1 [abstract]. Hematol. Oncol. 35 (Suppl. S2), 28 (2017).

    Article  Google Scholar 

  28. Abramson, J. et al. High CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T cell product JCAR017 (TRANSCEND NHL 001) [abstract]. Hematol. Oncol. 35 (Suppl. S2), 138 (2017).

    Article  Google Scholar 

  29. Ali, S. A. et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maude, S. L., Barrett, D., Teachey, D. T. & Grupp, S. A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 20, 119–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, Y. et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J. Hematol. Oncol. 9, 70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishii, K. et al. Tocilizumab-refractory cytokine release syndrome (CRS) triggered by chimeric antigen receptor (CAR)-transduced T cells may have distinct cytokine profiles compared to typical CRS. Blood 128, 3358 (2016).

    Google Scholar 

  36. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koestner, W. et al. PD-L1 blockade effectively restores strong graft-versus-leukemia effects without graft-versus-host disease after delayed adoptive transfer of T-cell receptor gene-engineered allogeneic CD8+ T cells. Blood 117, 1030–1041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romanski, A. et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J. Cell. Mol. Med. 20, 1287–1294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, J. et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci. Rep. 5, 11483 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–977 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Teachey, D. T. et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121, 5154–5157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. U.S. Department of Health & Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0 https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf (2010).

  44. Frey, N. V. et al. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. Blood 124, 2296–2296 (2014).

    Google Scholar 

  45. Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, F. et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods 434, 1–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh, J. A., Beg, S. & Lopez-Olivo, M. A. Tocilizumab for rheumatoid arthritis. Cochrane Database of Syst. Rev. CD008331 (2010).

  49. Deisseroth, A. et al. FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin. Cancer Res. 21, 950–954 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolyt. 3, 16011 (2016).

    Article  CAS  Google Scholar 

  51. Mihara, M. et al. Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int. Immunopharmacol. 5, 1731–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Zaki, M. H., Nemeth, J. A. & Trikha, M. CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int. J. Cancer. 111, 592–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Nishimoto, N. et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Paliogianni, F., Ahuja, S. S., Balow, J. P., Balow, J. E. & Boumpas, D. T. Novel mechanism for inhibition of human T cells by glucocorticoids. Glucocorticoids inhibit signal transduction through IL-2 receptor. J. Immunol. 151, 4081–4089 (1993).

    CAS  PubMed  Google Scholar 

  55. Lanza, L. et al. Prednisone increases apoptosis in in vitro activated human peripheral blood T lymphocytes. Clin. Exp. Immunol. 103, 482–490 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Franchimont, D. et al. Effects of dexamethasone on the profile of cytokine secretion in human whole blood cell cultures. Regul. Pept. 73, 59–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Ozdemir, E. et al. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood 100, 3690–3697 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Schultz, D. R. & Arnold, P. I. Properties of four acute phase proteins: C-reactive protein, serum amyloid A protein, α1-acid glycoprotein, and fibrinogen. Semin. Arthritis Rheum. 20, 129–147 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Pepys, M. B. & Hirschfield, G. M. C-Reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmidt-Arras, D. & Rose-John, S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 64, 1403–1415 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Schuster, S. J. et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood 126, 183–183 (2015).

    Google Scholar 

  62. Santomasso, B. et al. Biomarkers associated with neurotoxicity in adult patients with relapsed or refractory B-ALL (R/R B-ALL) treated with CD19 CAR T cells [abstract]. J. Clin. Oncol. 35, (15 Suppl.), 3019 (2017).

    Article  Google Scholar 

  63. Turtle, C. J. et al. Cytokine release syndrome (CRS) and neurotoxicity (NT) after CD19-specific chimeric antigen receptor- (CAR-) modified T cells [abstract]. J. Clin. Oncol. 35, (15 Suppl.), 3020 (2017).

    Article  Google Scholar 

  64. Johnson, L. A. & June, C. H. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 27, 38–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Sutter, R., Semmlack, S. & Kaplan, P. W. Nonconvulsive status epilepticus in adults — insights into the invisible. Nat. Rev. Neurol. 12, 281–293 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Walker, M. et al. Nonconvulsive status epilepticus: Epilepsy Research Foundation workshop reports. Epileptic Disord. 7, 253–296 (2005).

    PubMed  Google Scholar 

  67. Hovinga, C. A. Levetiracetam: a novel antiepileptic drug. Pharmacotherapy 21, 1375–1388 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Guenther, S. et al. Chronic valproate or levetiracetam treatment does not influence cytokine levels in humans. Seizure 23, 666–669 (2014).

    Article  PubMed  Google Scholar 

  69. Reuters. Juno ends development of high-profile leukemia drug after deaths. Reuters http://www.reuters.com/article/us-juno-leukemia-idUSKBN1685QQ (2017).

  70. Harris, J. Kite reports cerebral edema death in ZUMA-1 CAR T-cell trial. OncLive http://www.onclive.com/web-exclusives/kite-reports-cerebral-edema-death-in-zuma1-car-tcell-trial (2017).

  71. Henter, J. I. et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 48, 124–131 (2007).

    Article  PubMed  Google Scholar 

  72. Ramos-Casals, M., Brito-Zeron, P., Lopez-Guillermo, A., Khamashta, M. A. & Bosch, X. Adult haemophagocytic syndrome. Lancet 383, 1503–1516 (2014).

    Article  PubMed  Google Scholar 

  73. Jordan, M. B., Hildeman, D., Kappler, J. & Marrack, P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104, 735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Jordan, M. B., Allen, C. E., Weitzman, S., Filipovich, A. H. & McClain, K. L. How I treat hemophagocytic lymphohistiocytosis. Blood 118, 4041–4052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tamamyan, G. N. et al. Malignancy-associated hemophagocytic lymphohistiocytosis in adults: Relation to hemophagocytosis, characteristics, and outcomes. Cancer 122, 2857–2866 (2016).

    Article  PubMed  Google Scholar 

  76. Daver, N. & Kantarjian, H. Malignancy-associated haemophagocytic lymphohistiocytosis in adults. Lancet Oncol. 18, 169–171 (2017).

    Article  PubMed  Google Scholar 

  77. Schram, A. M. & Berliner, N. How I treat hemophagocytic lymphohistiocytosis in the adult patient. Blood 125, 2908–2914 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Jordan, M. et al. A novel targeted approach to the treatment of hemophagocytic lymphohistiocytosis (HLH) with an anti-interferon gamma (IFNγ) monoclonal antibody (mAb), NI-0501: first results from a pilot phase 2 study in children with primary HLH [abstract]. Blood 126, LBA-3 (2015).

    Google Scholar 

  79. Zhou, X. & Brenner, M. K. Improving the safety of T-Cell therapies using an inducible caspase-9 gene. Exp. Hematol. 44, 1013–1019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Serafini, M. et al. Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease. Hum. Gene Ther. 15, 63–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, X. et al. A transgene-encoded cell surface polypeptide for selection. in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Philip, B. et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Thomis, D. C. et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97, 1249–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Sakemura, R. et al. A Tet-on inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol. Res. 4, 658–668 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Dai, H., Wang, Y., Lu, X. & Han, W. Chimeric Antigen receptors modified T-cells for cancer therapy. J. Natl Cancer Inst. 108, djv439 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

    Article  PubMed  Google Scholar 

  93. Maus, M. V. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 1, 26–31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brentjens, R., Yeh, R., Bernal, Y., Riviere, I. & Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther. 18, 666–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chong, E. A. et al. Chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with poor prognosis, relapsed or refractory CD19+ follicular lymphoma: prolonged remissions relative to antecedent therapy [abstract]. Blood 128, 1100 (2016).

    Article  CAS  Google Scholar 

  96. Locke, F. L. et al. A phase 2 multicenter trial of KTE-C19 (anti-CD19 CAR T Cells) in patients with chemorefractory primary mediastinal B-cell lymphoma (PMBCL) and transformed follicular lymphoma (TFL): interim results from ZUMA-1 [abstract]. Blood 128, 998 (2016).

    Google Scholar 

  97. Russell, J. A. et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 358, 877–887 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Frisen, L. Swelling of the optic nerve head: a staging scheme. J. Neurol. Neurosurg. Psychiatry 45, 13–18 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of S.S.N. is supported by The University of Texas MD Anderson Cancer Center Support Grant (P30 CA016672) from the US Department of Health & Human Services, National Institutes of Health, and by generous philanthropic contributions to the University of Texas MD Anderson Moon Shots Program.

Author information

Authors and Affiliations

Authors

Contributions

S.S.N. and S.T. contributed equally to this article, and wrote the manuscript. S.S.N., S.T., N.J., N.D., A.M.G., and S.A. contributed to researching data for article. All authors contributed to discussions of content, to the development of the proposed guidelines, and to review/editing of the manuscript before submission.

Corresponding author

Correspondence to Sattva S. Neelapu.

Ethics declarations

Competing interests

S.S.N. has received research support from Bristol-Myers Squibb, Celgene, Cellectis, Kite Pharma, Merck, and Poseida Therapeutics. S.S.N. has also served as a consultant and/or Scientific Advisory Board member for Celgene, Kite Pharma, Merck, and Novartis. S.T. served as a Scientific Advisory Board member for Kite Pharma. F.L.L. has served as a Scientific Advisory Board member for Kite Pharma, and as a Consultant to Cellular Biomedicine Group. K.V.K. has served as a scientific advisor to and has received research funding from Juno Therapeutics and Kite Pharma. Y.L. has received research funding from Janssen. N.J. has received research support from Abbvie, ADC Therapeutics, Bristol-Myers Squibb, Celgene, Genentech, Incyte, Pharmacyclics, Pfizer, Seattle Genetics, Servier, and Verastem. N.J. has also served on the advisory board and received honorarium from Adaptive Biotechnologies, ADC Therapeutics, Novartis, Novimmune, Pharmacyclics, Pfizer, Servier, and Verastem. N.D. has received research support from Bristol-Myers Squibb, Daichi-Sanky, Incyte, Karyopharm, Pfizer, and Sunesis. N.D. has also received served as a consultant for Incyte, Jazz, Karyopharm, Novartis, Otsuka, Pfizer, and Sunesis. J.W. has received research funding and served on the Advisory Boards for Kite Pharma and Novartis. J.F.d.G. has received research support from Astrazeneca, Deciphera Pharmaceuticals, Eli Lilly, EMD-Serono, Mundipharma, Novartis, Sanofi-Aventis. J.F.d.G. has also served as a consultant or Advisory Board member for AbbVie, Astrazeneca, Celldex, Deciphera Pharmaceuticals, FivePrime Therapeutics, Foundation Medicine, Genentech, Insys Therapeutics, Kadmon, Merck, Novartis, and Novogen. J.F.d.G. is a stock owner of Gilead and Ziopharm Oncology, and his spouse is employed by Ziopharm Oncology. S.A. served as an Advisory Board member for Kite Pharma. K.R. is on the Independent Data Monitoring Committee for Kiadis Pharma. The other authors declare no competing interests.

Supplementary information

Supplementary information S1 (table)

Comparison of tocilizumab and siltuximab (PDF 128 kb)

Supplementary information S2 (table)

Example customized tracking tool for toxicities of CAR-T-cell therapy in EHRs (PDF 151 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neelapu, S., Tummala, S., Kebriaei, P. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol 15, 47–62 (2018). https://doi.org/10.1038/nrclinonc.2017.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.148

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer