Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Equal access to innovative therapies and precision cancer care

Abstract

Patients with cancers of differing histologies that express certain biomarkers are likely to benefit from treatment with targeted therapies. However, targets can be present in malignancies other than those indicated by a drug's label, and as a result, affected patients will have no access to those potentially useful drugs. To tackle this issue, the French National Cancer Institute developed the AcSé Programme in 2013. This programme is designed to make treatment decisions or recommendations on the basis of the presence of relevant biomarkers for malignancies with no targeted therapies available and also aims to improve safety, and evaluate the efficacy of targeted drugs used outside of their approved indications. Patients across France have access to molecular testing in 28 molecular genetics centres and to targeted therapies within phase II trials provided no other trials exist in which they could reasonably be included. Trials include patients below the age of 18 if safe dosing data are available. As of January 2016, 183 French clinical sites and over 7,000 patients are participating in AcSé led trials. Proof of concept is being demonstrated through trials designed to investigate the effectiveness of crizotinib and vemurafenib in a wide variety of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 28 INCa-certified molecular genetics centres in France.

Similar content being viewed by others

References

  1. Institut National du Cancer. Situation sur la chimothérapie des cancers: rapport 2014. http://www.e-cancer.fr/Expertises-et-publications/Catalogue-des-publications/Rechercher-des-publications?theme=50709&type_cancer=&public=&year=&langue=&collection=

  2. Bertolini, F., Sukhatme, V. P. & Bouche, G. Drug repurposing in oncology — patient and health systems opportunities. Nat. Rev. Clin. Oncol. 12, 732–742 (2015).

    Article  PubMed  Google Scholar 

  3. De Souza, J. A. et al. Unsupported off-label chemotherapy in metastatic colon cancer. BMC Health Serv. Res. 29, 481 (2012).

    Article  Google Scholar 

  4. Casali, P. G., Bruzzi, P., Bogaerts, J. & Blay, J.-Y. Rare cancers in Europe (RCE) methodological recommendations for clinical studies in rare cancers: a European consensus position paper. Ann. Oncol. 26, 300–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Nowak, F., Soria, J. C. & Calvo, F. Tumour molecular profiling for deciding therapy — the French initiative. Nat. Rev. Clin. Oncol. 9, 479–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. SIOPe. The SIOP-Europe strategic plan: a European cancer plan for children and adolescents. [online], (2015).

  7. US National Library of Science. ClinicalTrials.gov[online], (2016).

  8. US National Library of Science. ClinicalTrials.gov[online], (2015).

  9. US National Library of Science. ClinicalTrials.gov[online], (2015).

  10. US National Library of Science. ClinicalTrials.gov[online], (2015).

  11. US National Library of Science. ClinicalTrials.gov[online], (2016).

  12. Cui, J. J. et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54, 6342–6363 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mano, H. ALKoma: a cancer subtype with a shared target. Cancer Discov. 2, 495–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Carpentier, E. L. & Mossé, Y. P. Targeting ALK in neuroblastoma-preclinical and clinical advancements. Nat. Rev. Clin. Oncol. 9, 391–399 (2012).

    Article  Google Scholar 

  16. Gherardi, E., Birchmeier, W., Birchmeier, C. & Vande Woude, G. Targeting MET in cancer: rationale and progress. Nat. Rev. Cancer 12, 89–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Ou, S. H., Tan, J., Yen, Y. & Soo, R. A. ROS1 as a 'druggable' receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev. Anticancer Ther. 12, 447–456 (2014).

    Article  Google Scholar 

  18. Gaudino, G. et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 13, 3524–3532 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8, 11–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Shaw, A. T., Hsu, P. P., Awad, M. M. & Engelman, J. A. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer 13, 772–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Gaal, J. C. et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J. Clin. Oncol. 30, 308–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, P. C. et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer 47, 1025–1037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tuma, R. S. ALK gene amplified in most inflammatory breast cancers. J. Natl Cancer Inst. 104, 87–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Pierscianek, D. et al. MET gain in diffuse astrocytomas is associated with poorer outcome. Brain Pathol. 23, 13–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Charest, A. I. et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 37, 58–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Karayan-Tapon, L. et al. Lack of GOPCROS1 (FIGROS1) rearrangement in adult human gliomas. Eur. J. Cancer 50, 2364–2366 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lovly, C. M. et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 4, 889–895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mossé, Y. P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase I consortium study. Lancet Oncol. 14, 472–480 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vassal, G., Geoerger, B. & Morland, B. Is the European pediatric medicine regulation working for children and adolescents with cancer? Clin. Cancer Res. 19, 1315–1325 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. US National Library of Science. ClinicalTrials.gov[online], (2016).

  33. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hall, R. D. & Kudchardkar, R. R. BRAF mutations: signalling, epidemiology, and clinical experience in multiple malignancies. Cancer Control 21, 221–229 (2014).

    Article  PubMed  Google Scholar 

  35. Bautista, F. et al. Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr. Blood Cancer 61, 1101–1103 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. US National Library of Science. ClinicalTrials.gov[online], (2016).

  37. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sinha, R. et al. Cutaneous adverse events associated with vemurafenib in patients with metastatic melanomas: practical advice on diagnosis, prevention and management of the main treatment-related skin toxicities. Br. J. Dermatol. 167, 987–994 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Simon, R. Optimal two-stage designs for phase II clinical trials. Control Clin. Trials 10, 1–10 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Gehan, E. A. The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent. J. Chron. Dis. 13, 346–353 (1961).

    Article  CAS  PubMed  Google Scholar 

  41. Ensign, L. G., Gehan, E. A., Kamen, D. S. & Thal, P. F. An optimal three-stage design for phase II clinical trials. Stat. Med. 13, 1727–1736 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Zohar, S., Teramukai, S. & Zhou, Y. Bayesian design and conduct of phase II single-arm clinical trials with binary outcomes: a tutorial. Contemp. Clin. Trials 29, 608–616 (2008).

    Article  PubMed  Google Scholar 

  43. Committee for medicinal products for human use (CHMP). Guideline on clinical trials in small populations. European Medical Agency [online], (2006).

  44. Mayo, M. S. & Gajewski, B. J. Bayesian sample size calculations in phase II clinical trials using informative conjugate priors. Control Clin. Trials 25, 157–167 (2004).

    Article  PubMed  Google Scholar 

  45. Neuenschwander, B., Capkun-Niggli, G., Branson, M. & Spiegelhalter, D. J. Summarizing historical information on controls in clinical trials. Clin. Trials 7, 5–18 (2010).

    Article  PubMed  Google Scholar 

  46. El-Maraghi, R. H. & Eisenhauer, E. A. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J. Clin. Oncol. 26, 1346–1354 (2008).

    Article  PubMed  Google Scholar 

  47. US National Library of Science. ClinicalTrials.gov[online], (2015).

  48. Agence nationalle de Sécurité du Médicament et des produtis de santé. Clinical trials registry. [online]

  49. Schilsky, R. L. ASCO's Targeted Agent and Profiling Utilization Registry (TAPUR) Study. ASCO [online], (2016).

    Google Scholar 

  50. André, F. et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 15, 267–274 (2014).

    PubMed  Google Scholar 

  51. Ferté, C. et al. Molecular screening for cancer treatment optimization (MOSCATO 01): a prospective molecular triage trial [abstract]. Cancer Res. 74 (Suppl.), CT240 (2014).

    Google Scholar 

  52. Tsimberidou, A. M. et al. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin. Cancer Res. 20, 4827–4836 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Conley, B. A. & Doroshow, J. H. Molecular analysis for therapy choice: NCI MATCH. Semin. Oncol. 41, 297–299 (2014).

    Article  PubMed  Google Scholar 

  54. Kang, B. P. et al. The Signature Program: bringing the protocol to the patient. Clin. Pharmacol. Ther. 98, 124–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Conti, R. M. et al. Prevalence of off-label use and spending in 2010 among patent-protected chemotherapies in a population-based cohort of medical oncologsts. J. Clin. Oncol. 31, 1134–1139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joerger, M. et al. Off-label use of anticancer drugs in eastern Switzerland: a population-based prospective cohort study. Eur. J. Clin. Pharmacol. 70, 719–725 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Mehr, S. R. The complexity of covering off-label use for a multitude of oncology regimens. Am. J. Manag. Care 18, SP242–SP247 (2012).

    PubMed  Google Scholar 

  58. Irwin, B., Hirsch, B. R., Samsa, G. P. & Abernethy, A. P. Conflict of interest disclosure in off-label oncology clinical trials. J. Oncol. Pract. 8, 298–302 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eberst, L. et al. The off-label use of targeted therapies in sarcomas: the OUTC'S program. BMC Cancer 24, 870 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Maren White (freelancer editor and medical writer) for her editorial support in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N. H-L., M. J., F. N., M-C.L-D., D. P. and G. V. researched data for this article. M-C.L-D., D. P. and G. V. wrote the article, A. B., J.-Y. B., M-C.L-D., D. P. and G. V. made a substantial contribution to the discussion of content, and all authors review and edited the manuscript before submission and during revisions.

Corresponding author

Correspondence to Agnès Buzyn.

Ethics declarations

Competing interests

The AcSé programme is funded by INCA and ARC Foundation for Cancer Research. The clinical trials are sponsored by Unicancer. G.V. is chief-investigator of AcSé-crizotinib and J.-Y. B. is chief-investigator of AcSé-vémurafénib.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzyn, A., Blay, JY., Hoog-Labouret, N. et al. Equal access to innovative therapies and precision cancer care. Nat Rev Clin Oncol 13, 385–393 (2016). https://doi.org/10.1038/nrclinonc.2016.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.31

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer