Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diet, nutrition, and cancer: past, present and future

Key Points

  • Substantial experimental evidence indicates the potential importance of dietary and nutritional factors in cancer prevention, but identifying relationships between diet and cancer in observational epidemiological studies and intervention trials has proved challenging

  • Study design issues, imprecise dietary assessments, and a lack of consideration of tumour heterogeneity generally attenuate relative-risk estimates in observational studies; dietary biomarkers and characterization of aetiological subtypes can help to better identify diet–cancer associations

  • Interventional findings are constrained by the timing and brevity of intervention, nonlinear diet–cancer relationships, issues relating to baseline nutritional status, and magnitudes of change in diet that are generally insufficient to affect cancer outcomes

  • Foods and eating patterns are complex, and assessment of dietary patterns, rather than the traditional reductionist approach focused on specific dietary factors, is a new and more-promising strategy for investigating relationships with cancer

  • New technologies and advances in genetics, epigenetics and metabolomics, and consideration of the influence of the microbiome, will expand our understanding of the role of dietary factors in cancer risk and disease progression

  • Effectively communicating the status of the evolving science, and evidence-based dietary recommendations for cancer prevention that are based on rigorous review processes should be emphasized in guidance for the public and individual patients

Abstract

Despite the potentially important roles of diet and nutrition in cancer prevention, the evidence to support these roles is widely perceived by the public and health professionals as being inconsistent. In this Review, we present the issues and challenges in conducting and interpreting diet–cancer research, including those relating to the design of epidemiological studies, dietary data collection methods, and factors that affect the outcome of intervention trials. Approaches to improve effect estimates, such as the use of biomarkers to improve the accuracy of characterizing dietary exposures, are also discussed. Nutritional and dietary patterns are complex; therefore, the use of a reductionist approach to investigations, by focusing on specific nutrients, can produce misleading information. The effects of tumour heterogeneity and the failure to appreciate the nonlinear, U-shaped relationship between micronutrients and cancer in both observational studies and clinical trials are discussed. New technologies and investigational approaches are enabling the exploration of complex interactions between genetic, epigenetic, metabolic, and gut-microbial processes that will inform our knowledge of the diet–cancer relationship. Communicating the status of the evolving science in the context of the overall scientific evidence base, and evidence-based dietary recommendations for cancer prevention, should be emphasized in guidance for the public and for individual patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Food, nutrition, obesity, physical activity, and the cellular processes linked to cancer6.

References

  1. 1

    Vineis, P. & Wild, C. P. Global cancer patterns: causes and prevention. Lancet 383, 549–557 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    American Cancer Society. Cancer prevention & early detection facts & figures 2012. [online] (2012).

  5. 5

    Rey-Ares, L., Ciapponi, A. & Pichon-Riviere, A. Efficacy and safety of human papilloma virus vaccine in cervical cancer prevention: systematic review and meta-analysis. Arch. Argent. Pediatr. 110, 483–489 (2012).

    PubMed  Google Scholar 

  6. 6

    World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. [online] (2007). This paper provides a comprehensive, evidence-based review of the scientific literature on food, nutrition, and physical activity in relation to cancer.

  7. 7

    World Cancer Research Fund/American Institute for Cancer Research. Breast cancer 2010 report: food, nutrition, physical activity, and the prevention of breast cancer. [online] (2010).

  8. 8

    World Cancer Research Fund/American Institute for Cancer Research. Colorectal cancer 2011 report: food, nutrition, physical activity, and the prevention of colorectal cancer. [online] (2011).

  9. 9

    World Cancer Research Fund/American Institute for Cancer Research. Pancreatic cancer 2012 report: food, nutrition, physical activity, and the prevention of pancreatic cancer. [online] (2012).

  10. 10

    World Cancer Research Fund/American Institute for Cancer Research. Endometrial cancer 2013 report: food, nutrition, physical activity, and the prevention of endometrial cancer. [online] (2013).

  11. 11

    World Cancer Research Fund/American Institute for Cancer Research. Ovarian cancer 2014 report: food, nutrition, physical activity, and the prevention of ovarian cancer 2014. [online] (2014).

  12. 12

    Albanes, D. et al. Effects of alpha-tocopherol and beta-carotene supplements on cancer incidence in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study. Am. J. Clin. Nutr. 62, 1427S–1430S (1995).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    World Cancer Research Fund International. Our cancer prevention recommendations. [online] (2016).

  14. 14

    Kushi, L. H. et al. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 62, 30–67 (2012). Guidelines from the American Cancer Society that consider both individual behaviours, as well as the community context to support such behaviours, for cancer prevention.

    Article  PubMed  Google Scholar 

  15. 15

    Franz, M. J. et al. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 26 (Suppl. 1), S51–S61 (2003).

    PubMed  Google Scholar 

  16. 16

    Dyson, P. A. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 28, 1282–1288 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2960–2984 (2014).

    Article  PubMed  Google Scholar 

  18. 18

    Baer, D. J., Rice Bradley, B. H., Kris-Etherton, P., Mente, A. & de Oliveira Otto, M. Insights and perspectives on dietary modifications to reduce the risk of cardiovascular disease. Adv. Nutr. 5, 553–555 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Key, T. J. et al. Diet, nutrition and the prevention of cancer. Publ. Health Nutr. 7, 187–200 (2004).

    Article  Google Scholar 

  20. 20

    AICR IARC & UICC. Explore a timeline of the history of cancer from BCE to 2011. The Cancer Atlas [online].

  21. 21

    Jones, D. S., Podolsky, S. H. & Greene, J. A. The burden of disease and the changing task of medicine. N. Engl. J. Med. 366, 2333–2338 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Grant, M. Galen on Food and Diet (Routledge, 2000).

    Google Scholar 

  23. 23

    Hoffman, F. Cancer and Diet (Williams and Wilkins, 1937).

    Google Scholar 

  24. 24

    Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 66, 1191–1308 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Committee on Diet Nutrition and Cancer. Diet, Nutrition, and Cancer (National Academy Press,1982).

  26. 26

    Nutrition Policy Board, U.S. Public Health Service. The Surgeon General's Report on Nutrition and Health (U.S. Public Health Service, 1988).

  27. 27

    U.S. Department of Health, Education and Welfare. Smoking and health: report of the Advisory Committee to the Surgeon General of the Public Health Service. (U.S Public Health Service, 1964).

  28. 28

    National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk (National Academies Press, 1989).

  29. 29

    World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition and the Prevention of Cancer: a Global Perspective. (American Institute for Cancer Research, Washington, DC, USA 1997).

  30. 30

    American Institute for Cancer Research. Continuous Update Project findings & reports. [online] (2015). Website showing scientific research reports (by tumour site) on diet, nutrition, physical activity and cancer that are updated on a rolling basis.

  31. 31

    Schatzkin, A. et al. Observational epidemiologic studies of nutrition and cancer: the next generation (with better observation). Cancer Epidemiol. Biomarkers Prev. 18, 1026–1032 (2009). This paper provides a discussion of the challenges inherent in collecting dietary data, with suggestions for moving forward, including a discussion of internet-based resources and statistical approaches to augment standard assessment tools and biomarkers.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Colditz, G. A. Overview of the epidemiology methods and applications: strengths and limitations of observational study designs. Crit. Rev. Food Sci. Nutr. 50 (Suppl. 1), 10–12 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33

    Delgado-Rodriguez, M. & Llorca, J. Bias. J. Epidemiol. Commun. Health 58, 635–641 (2004).

    Article  Google Scholar 

  34. 34

    Freudenheim, J. L. Study design and hypothesis testing: issues in the evaluation of evidence from research in nutritional epidemiology. Am. J. Clin. Nutr. 69, 1315S–1321S (1999).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Gibson, T. M., Ferrucci, L. M., Tangrea, J. A. & Schatzkin, A. Epidemiological and clinical studies of nutrition. Semin. Oncol. 37, 282–296 (2010). The paper provides a thoughtful discussion about the lack of concordance between observational studies and randomized trials involving nutrition, and possible reasons why.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Pinsky, P. F. et al. Evidence of a healthy volunteer effect in the prostate, lung, colorectal, and ovarian cancer screening trial. Am. J. Epidemiol. 165, 874–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Pierce, J. P. et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial. JAMA 298, 289–298 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38

    Mayne, S. T., Ferrucci, L. M. & Cartmel, B. Lessons learned from randomized clinical trials of micronutrient supplementation for cancer prevention. Annu. Rev. Nutr. 32, 369–390 (2012). In this paper, the authors review results of trials of micronutrient supplements for cancer prevention, concluding that nutrient supplements may have benefit in populations with suboptimal nutritional status but conversely may be harmful in populations with higher status, describing the so-called U-shaped curve.

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Blumberg, J. et al. Evidence-based criteria in the nutritional context. Nutr. Rev. 68, 478–484 (2010).

    Article  PubMed  Google Scholar 

  40. 40

    Prentice, R. L., Tinker, L. F., Huang, Y. & Neuhouser, M. L. Calibration of self-reported dietary measures using biomarkers: an approach to enhancing nutritional epidemiology reliability. Curr. Atheroscler. Rep. 15, 353 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Thompson, F. E., Subar, A. F., Loria, C. M., Reedy, J. L. & Baranowski, T. Need for technological innovation in dietary assessment. J. Am. Diet Assoc. 110, 48–51 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Freedman, L. S., Schatzkin, A., Midthune, D. & Kipnis, V. Dealing with dietary measurement error in nutritional cohort studies. J. Natl Cancer Inst. 103, 1086–1092 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Kipnis, V. et al. Structure of dietary measurement error: results of the OPEN biomarker study. Am. J. Epidemiol. 158, 14–21; discussion 22–26 (2003).

    Article  PubMed  Google Scholar 

  44. 44

    Kipnis, V. et al. Bias in dietary-report instruments and its implications for nutritional epidemiology. Publ. Health Nutr. 5, 915–923 (2002).

    Article  Google Scholar 

  45. 45

    Thompson, F. E. & Subar, A. F. Assessment methods for research and practice, in Nutrition in the Prevention and Treatment of Disease (eds Couldston, A. et al.) (Elsevier Inc., 2013).

    Google Scholar 

  46. 46

    Kroke, A. et al. Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am. J. Clin. Nutr. 70, 439–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Subar, A. F. et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. Am. J. Epidemiol. 158, 1–13 (2003).

    Article  PubMed  Google Scholar 

  48. 48

    Lissner, L. et al. OPEN about obesity: recovery biomarkers, dietary reporting errors and BMI. Int. J. Obes. (Lond.) 31, 956–961 (2007).

    Article  CAS  Google Scholar 

  49. 49

    Neuhouser, M. L. et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women's Health Initiative. Am. J. Epidemiol. 167, 1247–1259 (2008).

    Article  PubMed  Google Scholar 

  50. 50

    Prentice, R. L. et al. Statistical aspects of the use of biomarkers in nutritional epidemiology research. Stat. Biosci. 1, 112–123 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Prentice, R. L. et al. Regression calibration in nutritional epidemiology: example of fat density and total energy in relationship to postmenopausal breast cancer. Am. J. Epidemiol. 178, 1663–1672 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Prentice, R. L. et al. Low-fat dietary pattern and risk of invasive breast cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295, 629–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Martin, L. J. et al. A randomized trial of dietary intervention for breast cancer prevention. Cancer Res. 71, 123–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Huang, Y. et al. Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion. Hypertension 63, 238–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Freedman, L. S. et al. Using regression calibration equations that combine self-reported intake and biomarker measures to obtain unbiased estimates and more powerful tests of dietary associations. Am. J. Epidemiol. 174, 1238–1245 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Prentice, R. L. et al. Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am. J. Epidemiol. 174, 591–603 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Freedman, L. S. et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am. J. Epidemiol. 180, 172–188 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Carroll, R. J. et al. Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am. J. Epidemiol. 175, 340–347 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Subar, A. F. et al. The Automated Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet 112, 1134–1137 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Illner, A. K. et al. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int. J. Epidemiol. 41, 1187–1203 (2012).

    Article  PubMed  Google Scholar 

  61. 61

    Kos, J. & Battig, K. Comparison of an electronic food diary with a nonquantitative food frequency questionnaire in male and female smokers and nonsmokers. J. Am. Diet Assoc. 96, 283–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Kretsch, M. J. & Fong, A. K. Validation of a new computerized technique for quantitating individual dietary intake: the Nutrition Evaluation Scale System (NESSy) versus the weighed food record. Am. J. Clin. Nutr. 51, 477–484 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Rivellese, A. A. et al. Evaluation of new computerized method for recording 7-day food intake in IDDM patients. Diabetes Care 14, 602–604 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Stockley, L. et al. Description of a food recording electronic device for use in dietary surveys. Hum. Nutr. Appl. Nutr. 40, 13–18 (1986).

    CAS  PubMed  Google Scholar 

  65. 65

    Van Horn, L. V. et al. Dietary assessment in children using electronic methods: telephones and tape recorders. J. Am. Diet Assoc. 90, 412–416 (1990).

    CAS  PubMed  Google Scholar 

  66. 66

    Fairfield, K. M. & Fletcher, R. H. Vitamins for chronic disease prevention in adults: scientific review. JAMA 287, 3116–3126 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Huang, H. Y. et al. The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: a systematic review for a National Institutes of Health state-of-the-science conference. Ann. Intern. Med. 145, 372–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Omenn, G. S. et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl Cancer Inst. 88, 1550–1559 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Virtamo, J. et al. Incidence of cancer and mortality following α-tocopherol and β-carotene supplementation: a postintervention follow-up. JAMA 290, 476–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Fortmann, S. P., Burda, B. U., Senger, C. A., Lin, J. S. & Whitlock, E. P. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U. S. Preventive Services Task Force. Ann. Intern. Med. 159, 824–834 (2013). Systematic review of the benefit and harms of vitamin and mineral supplements for both cancer and cardiovascular disease prevention; the authors conclude that no evidence of an effect of nutritional doses in individuals without known nutritional deficiencies is available.

    Article  PubMed  Google Scholar 

  71. 71

    Lea, A. J. Dietary factors associated with death-rates from certain neoplasms in man. Lancet 2, 332–333 (1966).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Wynder, E. L. et al. Breast cancer: weighing the evidence for a promoting role of dietary fat. J. Natl Cancer Inst. 89, 766–775 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Murtaugh, M. A. et al. Macronutrient composition influence on breast cancer risk in Hispanic and non-Hispanic white women: the 4-Corners Breast Cancer Study. Nutr. Cancer 63, 185–195 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74

    Bingham, S. A. & Day, N. Commentary: fat and breast cancer: time to re-evaluate both methods and results? Int. J. Epidemiol. 35, 1022–1024 (2006).

    Article  PubMed  Google Scholar 

  75. 75

    Freedman, L. S. et al. A comparison of two dietary instruments for evaluating the fat-breast cancer relationship. Int. J. Epidemiol. 35, 1011–1021 (2006).

    Article  PubMed  Google Scholar 

  76. 76

    Key, T. J. et al. Dietary fat and breast cancer: comparison of results from food diaries and food-frequency questionnaires in the UK Dietary Cohort Consortium. Am. J. Clin. Nutr. 94, 1043–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Blackburn, G. L. & Wang, K. A. Dietary fat reduction and breast cancer outcome: results from the Women's Intervention Nutrition Study (WINS). Am. J. Clin. Nutr. 86, S878–S881 (2007).

    Article  PubMed  Google Scholar 

  78. 78

    Liu, X., Wang, X., Lin, S., Yuan, J. & Yu, I. T. Dietary patterns and oesophageal squamous cell carcinoma: a systematic review and meta-analysis. Br. J. Cancer 110, 2785–2795 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79

    Albuquerque, R. C., Baltar, V. T. & Marchioni, D. M. Breast cancer and dietary patterns: a systematic review. Nutr. Rev. 72, 1–17 (2014).

    Article  PubMed  Google Scholar 

  80. 80

    Brennan, S. F., Cantwell, M. M., Cardwell, C. R., Velentzis, L. S. & Woodside, J. V. Dietary patterns and breast cancer risk: a systematic review and meta-analysis. Am. J. Clin. Nutr. 91, 1294–1302 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Bertuccio, P. et al. Dietary patterns and gastric cancer risk: a systematic review and meta-analysis. Ann. Oncol. 24, 1450–1458 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Yusof, A. S., Isa, Z. M. & Shah, S. A. Dietary patterns and risk of colorectal cancer: a systematic review of cohort studies (2000-2011). Asian Pac. J. Cancer Prev. 13, 4713–4717 (2012).

    Article  PubMed  Google Scholar 

  83. 83

    Bradshaw, P. T. et al. Associations between dietary patterns and head and neck cancer: the Carolina head and neck cancer epidemiology study. Am. J. Epidemiol. 175, 1225–1233 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Edefonti, V. et al. Nutrient-based dietary patterns and the risk of head and neck cancer: a pooled analysis in the International Head and Neck Cancer Epidemiology consortium. Ann. Oncol. 23, 1869–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Inoue-Choi, M., Flood, A., Robien, K. & Anderson, K. Nutrients, food groups, dietary patterns, and risk of pancreatic cancer in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 20, 711–714 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Li, W. Q. et al. Index-based dietary patterns and risk of incident hepatocellular carcinoma and mortality from chronic liver disease in a prospective study. Hepatology 60, 588–597 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87

    Michaud, D. S. et al. Dietary patterns and pancreatic cancer risk in men and women. J. Natl Cancer Inst. 97, 518–524 (2005).

    Article  PubMed  Google Scholar 

  88. 88

    Navarro Silvera, S. A. et al. Principal component analysis of dietary and lifestyle patterns in relation to risk of subtypes of esophageal and gastric cancer. Ann. Epidemiol. 21, 543–550 (2011).

    Article  PubMed  Google Scholar 

  89. 89

    Zhang, W. et al. Vegetable-based dietary pattern and liver cancer risk: results from the Shanghai women's and men's health studies. Cancer Sci. 104, 1353–1361 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90

    Guenther, P. M. et al. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet 113, 569–580 (2013).

    Article  PubMed  Google Scholar 

  91. 91

    Reedy, J. et al. Comparing 3 dietary pattern methods — cluster analysis, factor analysis, and index analysis — with colorectal cancer risk: the NIH-AARP Diet and Health Study. Am. J. Epidemiol. 171, 479–487 (2010). In this study, three different approaches for dietary pattern analysis in relation to colorectal cancer were compared using the same dataset, with the findings demonstrating the similarities and differences in results obtained via the use of different methods.

    Article  PubMed  Google Scholar 

  92. 92

    George, S. M. et al. Comparing indices of diet quality with chronic disease mortality risk in postmenopausal women in the Women's Health Initiative Observational Study: evidence to inform national dietary guidance. Am. J. Epidemiol. 180, 616–625 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Arem, H. et al. The Healthy Eating Index 2005 and risk for pancreatic cancer in the NIH-AARP study. J. Natl Cancer Inst. 105, 1298–1305 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Romaguera, D. et al. Is concordance with World Cancer Research Fund/American Institute for Cancer Research guidelines for cancer prevention related to subsequent risk of cancer? Results from the EPIC study. Am. J. Clin. Nutr. 96, 150–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Boeing, H. et al. Intake of fruits and vegetables and risk of cancer of the upper aero-digestive tract: the prospective EPIC-study. Cancer Causes Control 17, 957–969 (2006).

    Article  PubMed  Google Scholar 

  96. 96

    Aune, D. et al. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology 141, 106–118 (2011).

    Article  PubMed  Google Scholar 

  97. 97

    Anderson, W. F., Rosenberg, P. S., Prat, A., Perou, C. M. & Sherman, M. E. How many etiological subtypes of breast cancer: two, three, four, or more? J. Natl Cancer Inst. 106, dju165 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Prabhu, A., Obi, K. O. & Rubenstein, J. H. The synergistic effects of alcohol and tobacco consumption on the risk of esophageal squamous cell carcinoma: a meta-analysis. Am. J. Gastroenterol. 109, 822–827 (2014).

    Article  PubMed  Google Scholar 

  99. 99

    Freedman, N. D. et al. Alcohol intake and risk of oesophageal adenocarcinoma: a pooled analysis from the BEACON Consortium. Gut 60, 1029–1037 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Freedman, N. D. et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am. J. Epidemiol. 165, 1424–1433 (2007).

    Article  PubMed  Google Scholar 

  101. 101

    He, Z. et al. Prevalence and risk factors for esophageal squamous cell cancer and precursor lesions in Anyang, China: a population-based endoscopic survey. Br. J. Cancer 103, 1085–1088 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102

    Hardefeldt, H. A., Cox, M. R. & Eslick, G. D. Association between human papillomavirus (HPV) and oesophageal squamous cell carcinoma: a meta-analysis. Epidemiol. Infect. 142, 1119–1137 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Hoyo, C. et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int. J. Epidemiol. 41, 1706–1718 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Coleman, H. G. et al. Dietary fiber and the risk of precancerous lesions and cancer of the esophagus: a systematic review and meta-analysis. Nutr. Rev. 71, 474–482 (2013).

    Article  PubMed  Google Scholar 

  105. 105

    Larsson, S. C., Giovannucci, E. & Wolk, A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology 131, 1271–1283 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Yang, H. P. et al. Endometrial cancer risk factors by 2 main histologic subtypes: the NIH–AARP Diet and Health Study. Am. J. Epidemiol. 177, 142–151 (2013).

    Article  PubMed  Google Scholar 

  107. 107

    Neill, A. S. et al. Dietary phyto-oestrogens and the risk of ovarian and endometrial cancers: findings from two Australian case–control studies. Br. J. Nutr. 111, 1430–1440 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Dieci, M. V., Orvieto, E., Dominici, M., Conte, P. & Guarneri, V. Rare breast cancer subtypes: histological, molecular, and clinical peculiarities. Oncologist 19, 805–813 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Yang, X. R. et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J. Natl Cancer Inst. 103, 250–263 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Thomson, C. A. & Thompson, P. A. Fruit and vegetable intake and breast cancer risk: a case for subtype-specific risk? J. Natl Cancer Inst. 105, 164–165 (2013).

    Article  PubMed  Google Scholar 

  111. 111

    Jung, S. et al. Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J. Natl Cancer Inst. 105, 219–236 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112

    Eussen, S. J. et al. Plasma folate, related genetic variants, and colorectal cancer risk in EPIC. Cancer Epidemiol. Biomarkers Prev. 19, 1328–1340 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113

    Ulrich, C. M. et al. Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction? Cancer Epidemiol. Biomarkers Prev. 8, 659–668 (1999).

    CAS  PubMed  Google Scholar 

  114. 114

    Sharafeldin, N. et al. A candidate-pathway approach to identify gene-environment interactions: analyses of colon cancer risk and survival. J. Natl Cancer Inst. 107, djv160 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. 115

    Micha, R., Michas, G. & Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes — an updated review of the evidence. Curr. Atheroscler. Rep. 14, 515–524 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116

    Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014). The authors discuss opportunities and challenges in food metabolome research, as discussed in the First International Workshop on the Food Metabolome.

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Wild, C. P. The exposome: from concept to utility. Int. J. Epidemiol. 41, 24–32 (2012).

    Article  PubMed  Google Scholar 

  118. 118

    Fardet, A. et al. Metabolomics provide new insight on the metabolism of dietary phytochemicals in rats. J. Nutr. 138, 1282–1287 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Wishart, D. S. et al. HMDB 3.0 — the Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Metabolomics Society. Databases. [online] (2016).

  121. 121

    Guertin, K. A. et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am. J. Clin. Nutr. 101, 1000–1011 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122

    Liesenfeld, D. B., Habermann, N., Owen, R. W., Scalbert, A. & Ulrich, C. M. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol. Biomarkers Prev. 22, 2182–2201 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123

    Sampson, J. N. et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomarkers Prev. 22, 631–640 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124

    Pujos-Guillot, E. et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J. Proteome Res. 12, 1645–1659 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Guertin, K. A. et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 100, 208–217 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126

    Bishop, K. S. & Ferguson, L. R. The interaction between epigenetics, nutrition and the development of cancer. Nutrients 7, 922–947 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127

    Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genom. Hum. Genet. 9, 233–257 (2008).

    Article  CAS  Google Scholar 

  128. 128

    Jimenez-Chillaron, J. C. et al. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94, 2242–2263 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Karius, T., Schnekenburger, M., Dicato, M. & Diederich, M. MicroRNAs in cancer management and their modulation by dietary agents. Biochem. Pharmacol. 83, 1591–1601 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Ross, S. A. & Davis, C. D. MicroRNA, nutrition, and cancer prevention. Adv. Nutr. 2, 472–485 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131

    Garcia-Segura, L., Perez-Andrade, M. & Miranda-Rios, J. The emerging role of MicroRNAs in the regulation of gene expression by nutrients. J. Nutrigenet. Nutrigenom. 6, 16–31 (2013).

    Article  CAS  Google Scholar 

  132. 132

    Ho, E., Clarke, J. D. & Dashwood, R. H. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J. Nutr. 139, 2393–2396 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133

    Parasramka, M. A., Ho, E., Williams, D. E. & Dashwood, R. H. MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol. Carcinog. 51, 213–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Parasramka, M. A. et al. MicroRNA profiling of carcinogen-induced rat colon tumors and the influence of dietary spinach. Mol. Nutr. Food Res. 56, 1259–1269 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135

    Lam, T. K. et al. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol. Biomarkers Prev. 21, 2176–2184 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136

    Lillycrop, K. A. & Burdge, G. C. Breast cancer and the importance of early life nutrition. Cancer Treat. Res. 159, 269–285 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Burdge, G. C. & Lillycrop, K. A. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu. Rev. Nutr. 30, 315–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  139. 139

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140

    Hullar, M. A., Burnett-Hartman, A. N. & Lampe, J. W. Gut microbes, diet, and cancer. Cancer Treat. Res. 159, 377–399 (2014). In this paper, the authors provide an overview of the role of the gut-microbial community in carcinogenesis, including in tissues outside of the gastrointestinal tract, with implications for diet and nutrition.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142

    Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Rappaport, S. M. Biomarkers intersect with the exposome. Biomarkers 17, 483–489 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. 144

    Wild, C. P. Complementing the genome with an 'exposome': the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    International Agency for Research on Cancer. EPIC study: cohort description. [online] (2016).

Download references

Acknowledgements

The opinions and conclusions expressed in this article are solely the views of the authors and do not necessarily reflect those of the US Food and Drug Administration.

Author information

Affiliations

Authors

Contributions

All authors contributed substantially to researching data for the article, discussion of content, writing the article, and reviewing and editing of manuscript before submission.

Corresponding author

Correspondence to Cheryl L. Rock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayne, S., Playdon, M. & Rock, C. Diet, nutrition, and cancer: past, present and future. Nat Rev Clin Oncol 13, 504–515 (2016). https://doi.org/10.1038/nrclinonc.2016.24

Download citation

Further reading

Search

Quick links