Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolving molecularly targeted therapies for advanced-stage thyroid cancers

Key Points

  • Advances in understanding the genomic and functional alterations contributing to the pathogenesis of thyroid cancers have opened new therapeutic opportunities and are beginning to improve patient outcomes

  • RET mutations are common in medullary thyroid cancers (MTCs), and the multikinase inhibitors vandetanib and cabozantinib, which inhibit RET as well as other kinases, are now approved treatments for this disease

  • Multiple small-molecule multikinase inhibitors that block VEGFR signalling have shown promise in the treatment of radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC): sorafenib and lenvatinib are approved for use in the metastatic setting

  • Use of multikinase inhibitors can result in substantial toxicity, a 1–3% risk of death, and does not conclusively improve overall survival; these agent should thus be used with considerable restraint

  • MAPK-pathway inhibition might improve RAI uptake and, therefore, patient responses to RAI therapy with iodine-131; this combinatorial therapeutic approach is a promising novel strategy in patients with metastatic DTC

  • Early application of intensive multimodality therapy (combining surgery, intensity-modulated radiotherapy and taxane-based chemotherapy) might prolong overall survival of patients with anaplastic thyroid cancer, especially those with early stage disease

Abstract

Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered — and might further refine — patient care, and identify open questions for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological classifications of thyroid cancers.
Figure 2: Dominant signalling pathways associated with thyroid cancers, and clinically relevant inhibitors.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts & figures 2015. cancer.org[online], (2015).

  2. Chen, A. Y., Jemal, A. & Ward, E. M. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 115, 3801–3807 (2009).

    Article  PubMed  Google Scholar 

  3. Enewold, L. et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol. Biomarkers Prev. 18, 784–791 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hayat, M. J., Howlader, N., Reichman, M. E. & Edwards, B. K. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12, 20–37 (2007).

    Article  PubMed  Google Scholar 

  5. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  6. Davies, L. & Welch, H. G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295, 2164–2167 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Al-Eid, H. S. & Arteh, S. O. Cancer incidence report Saudi Arabia 2003. Saudi Health Council [online], (2003).

    Google Scholar 

  8. Hussain, F. et al. Incicidence of thyroid cancer in the Kingdom of Saudi Arabia, 2000–2010. Hematol. Oncol. Stem Cell Ther. 6, 58–64 (2013).

    Article  PubMed  Google Scholar 

  9. Ahn, H. S., Kim, H. J. & Welch, H. G. Korea's thyroid-cancer 'epidemic' — screening and overdiagnosis. N. Engl. J. Med. 371, 1765–1767 (2014).

    Article  PubMed  Google Scholar 

  10. Brito, J. P., Al Nofal, A., Montori, V. M., Hay, I. D. & Morris, J. C. The impact of subclinical disease and mechanism of detection on the rise in thyroid cancer incidence: a population-based study in Olmsted County, Minnesota during 1935 through 2012. Thyroid 25, 999–1007 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aschebrook-Kilfoy, B. et al. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol. Biomarkers Prev. 22, 1252–1259 (2013).

    Article  PubMed  Google Scholar 

  12. Ramsey, S. et al. Washington state cancer patients found to be at greater risk for bankruptcy than people without a cancer diagnosis. Health Aff. (Millwood) 32, 1143–1152 (2013).

    Article  Google Scholar 

  13. Smallridge, R. C. & Copland, J. A. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin. Oncol. (R. Coll. Radiol.) 22, 486–497 (2010).

    Article  CAS  Google Scholar 

  14. Brat, D. J. et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

    Article  CAS  Google Scholar 

  15. Surov, A. et al. Primary thyroid sarcoma: a systematic review. Anticancer Res. 35, 5185–5191 (2015).

    CAS  PubMed  Google Scholar 

  16. Chai, Y. J. et al. Clinicopathological characteristics and treatment outcomes of 38 cases of primary thyroid lymphoma: a multicenter study. Ann. Surg. Treat. Res. 89, 295–299 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harris, P. J. & Bible, K. C. Emerging therapeutics for advanced thyroid malignancies: rationale and targeted approaches. Expert Opin. Investig. Drugs 20, 1357–1375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hancock, S. L., Cox, R. S. & McDougall, I. R. Thyroid diseases after treatment of Hodgkin's disease. N. Engl. J. Med. 325, 599–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Jacob, P. et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat. Res. 165, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Ahn, D. et al. Clinical relationship between Hashimoto's thyroiditis and papillary thyroid cancer. Acta Oncol. 50, 1228–1234 (2011).

    Article  PubMed  Google Scholar 

  21. Wang, X. et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R253–R262 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Navas-Carrillo, D., Ríos, A., Rodríguez, J. M., Parrilla, P. & Orenes-Piñero, E. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings. Biochim. Biophys. Acta 1846, 468–476 (2014).

    CAS  PubMed  Google Scholar 

  23. Gara, S. K. et al. Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N. Engl. J. Med. 373, 448–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katoh, H., Yamashita, K., Enomoto, T. & Watanabe, M. Classification and general considerations of thyroid cancer. Ann. Clin. Pathol. 3, 1045 (2015).

    Google Scholar 

  25. Tuttle, R. M. et al. Thyroid carcinoma, version 2.2014. J. Natl Compr. Canc Netw. 12, 1671–1680 (2014).

    Article  PubMed  Google Scholar 

  26. Ganly, I. et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J. Clin. Endocrinol. Metab. 98, E962–E972 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chindris, A. M. et al. Clinical and molecular features of Hürthle cell carcinoma of the thyroid. J. Clin. Endocrinol. Metab. 100, 55–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Wells, S. A. Jr et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma: the american thyroid association guidelines task force on medullary thyroid carcinoma. Thyroid 25, 567–610 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nikiforov, Y. E. & Nikiforova, M. N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7, 569–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Aschebrook-Kilfoy, B., Ward, M. H., Sabra, M. M. & Devesa, S. S. Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006. Thyroid 21, 125–134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Spitzweg, C., Bible, K. C., Hofbauer, L. C. & Morris, J. C. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol. 2, 830–842 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Haugen, B. R. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schlumberger, M. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2, 356–358 (2014).

    Article  PubMed  Google Scholar 

  34. Durante, C. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 2892–2899 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Sabra, M. M. et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J. Clin. Endocrinol. Metab. 98, E829–E836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albero, A., Lopéz, J. E., Torres, A., de la Cruz, L. & Martín, T. Effectiveness of chemotherapy in advanced differentiated thyroid cancer: a systematic review. Endocr. Relat. Cancer 23, R71–R84 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Spencer, C. A., LoPresti, J. S., Fatemi, S. & Nicoloff, J. T. Detection of residual and recurrent differentiated thyroid carcinoma by serum thyroglobulin measurement. Thyroid 9, 435–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Hoofnagle, A. N. & Roth, M. Y. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J. Clin. Endocrinol. Metab. 98, 1343–1352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Camargo, R. Y. & Tomimori, E. K. Usefulness of ultrasound in the diagnosis and management of well-differentiated thyroid carcinoma. Arq. Bras. Endocrinol. Metabol. 51, 783–792 (2007).

    Article  PubMed  Google Scholar 

  40. Ishiwata, T., Iino, Y., Takei, H., Oyama, T. & Morishita, Y. Tumor angiogenesis as an independent prognostic indicator in human papillary thyroid carcinoma. Oncol. Rep. 5, 1343–1348 (1998).

    CAS  PubMed  Google Scholar 

  41. Soh, E. Y. et al. Thyroid-stimulating hormone promotes the secretion of vascular endothelial growth factor in thyroid cancer cell lines. Surgery 120, 944–947 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Lennard, C. M. et al. Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery 129, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Klein, M. et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 86, 656–658 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yu, X. M. et al. Increased expression of vascular endothelial growth factor C in papillary thyroid carcinoma correlates with cervical lymph node metastases. Clin. Cancer Res. 11, 8063–8069 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Soh, E. Y. et al. Neutralizing vascular endothelial growth factor activity inhibits thyroid cancer growth in vivo. Surgery 128, 1059–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Carlomagno, F. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 62, 7284–7290 (2002).

    CAS  PubMed  Google Scholar 

  47. Leboulleux, S. et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 13, 897–905 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Sherman, E. J. et al. A phase II study of VEGF trap in patients with radioactive iodine (RAI)-refractory thyroid carcinoma [abstract]. J. Clin. Oncol. 29, 5566 (2011).

    Article  Google Scholar 

  51. Baxi, S. S. et al. Hemorrhagic pseudoaneurysm in a patient receiving aflibercept for metastatic thyroid cancer. Thyroid 22, 552–555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. US National Library of Science. ClinicalTrials.gov[online], (2015).

  53. Schlumberger, M. et al. Randomized, double-blinded, placebo controled trial of sorafenib in locally advanced or metastatic patients with radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC) — exploratory analyses of patient-reported outcomes [abstract 100]. Presented at the 83rd Annual Meeting of the American Thyroid Association (2013).

  54. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  55. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, X., Makarewicz, J. M., Knauf, J. A., Johnson, L. K. & Fagin, J. A. Transformation by HrasG12V is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene 33, 5442–5449 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Rao, S. et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 22, 3950–3957 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Heymach, J. V. et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with sensitive relapse small-cell lung cancer. Ann. Oncol. 15, 1187–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Van Cutsem, E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol. 22, 1430–1438 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. US National Library of Science. ClinicalTrials.gov[online], (2015).

  61. Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. US National Library of Science. ClinicalTrials.gov[online], (2015).

  63. Kim, K. B. et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAFV600E mutation. Thyroid 23, 1277–1288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 1893–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dadu, R. et al. Efficacy and tolerability of vemurafenib in patients with BRAFV600E-positive papillary thyroid cancer: M. D. Anderson Cancer Center off label experience. J. Clin. Endocrinol. Metab. 100, E77–E81 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Bible, K. C. et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11, 962–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. US National Library of Science. ClinicalTrials.gov[online], (2016).

  68. Schlumberger, M. J. et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. Clin. Oncol. 27, 3794–3801 (2009).

    CAS  Google Scholar 

  69. Chakravarty, D. et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Invest. 121, 4700–4711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368, 623–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rothenberg, S. M. et al. V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 21, 1028–1035 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Riesco-Eizaguirre, G. et al. The BRAFV600E oncogene induces transforming growth factor β secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 69, 8317–8325 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. US National Library of Science. ClinicalTrials.gov[online], (2016).

  74. US National Library of Science. ClinicalTrials.gov[online], (2015).

  75. Reddi, H. V. et al. Antitumor activity of VB-111, a novel antiangiogenic virotherapeutic, in thyroid cancer xenograft mouse models. Genes Cancer 2, 993–995 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jasim, S. et al. Multi-cohort phase II trial of VB-111 in advanced radioactive iodine-refractory differentiated thyroid cancer [abstract 638]. Presented at the 15th International Thyroid Congress and 85th Annual Meeting of the American Thyroid Association (2015).

  77. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ribas, A. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16, 908–918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ryder, M., Callahan, M., Postow, M. A., Wolchok, J. & Fagin, J. A. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr. Relat. Cancer. 21, 371–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cunha, L. L., Marcello, M. A. & Ward, L. S. The role of the inflammatory microenvironment in thyroid carcinogenesis. Endocr. Relat. Cancer 21, R85–R103 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Ryder, M., Ghossein, R. A., Ricarte-Filho, J. C., Knauf, J. A. & Fagin, J. A. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15, 1069–1074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caillou, B. et al. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS ONE 6, e22567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ryder, M. et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE 8, e54302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soda, M. et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kelly, L. M. et al. Identification of the transforming STRN–ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc. Natl Acad. Sci. USA 111, 4233–4238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nikiforova, M. N. et al. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. McIver, B., Grebe, S. K. & Eberhardt, N. L. The PAX8/PPARγ fusion oncogene as a potential therapeutic target in follicular thyroid carcinoma. Curr. Drug Targets Immune Endocr. Metabol. Disord. 4, 221–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Dobson, M. E. et al. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8–PPARγ fusion protein thyroid carcinoma. Endocrinology 152, 4455–4465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kebebew, E. et al. Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid 19, 953–956 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Melo, M. et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 99, E754–E765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaserer, K. et al. Sporadic versus familial medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am. J. Surg. Pathol. 25, 1245–1251 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Dvorakova, S. et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol. Cell Endocrinol. 284, 21–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Wells, S. A. Jr et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bible, K. C. et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J. Clin. Endocrinol. Metab. 99, 1687–1693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schlumberger, M. et al. Final overall survival analysis of EXAM, an international, double-blind, randomized, placebo-controlled phase III trial of cabozantinib (Cabo) in medullary thyroid carcinoma (MTC) patients with documented RECIST progression at baseline [abstract]. J. Clin. Oncol. 33, 6012 (2015).

    Article  Google Scholar 

  97. Gild, M. L. et al. Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr. Relat. Cancer 20, 659–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chernock, R. D. & Hagemann, I. S. Molecular pathology of hereditary and sporadic medullary thyroid carcinomas. Am. J. Clin. Pathol. 143, 768–777 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Kumar, A. et al. Outcomes in response to aggressive multimodal therapy in anaplastic thyroid cancer: the Mayo Clinic Experience [abstract 72]. Presented at the 15th International Thyroid Congress and 85th Annual Meeting of the American Thyroid Association (2015).

  100. Bible, K. C. et al. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 97, 3179–3184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ain, K. B., Egorin, M. J. & DeSimone, P. A. Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Thyroid 10, 587–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Foote, R. L. et al. Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid 21, 25–30 (2011).

    Article  PubMed  Google Scholar 

  103. Sun, X. S. et al. Chemoradiation in anaplastic thyroid carcinomas. Crit. Rev. Oncol. Hematol. 86, 290–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Troch, M. et al. High efficacy of concomitant treatment of undifferentiated (anaplastic) thyroid cancer with radiation and docetaxel. J. Clin. Endocrinol. Metab. 95, E54–E57 (2010).

    Article  PubMed  Google Scholar 

  105. Ito, K. et al. Multimodality therapeutic outcomes in anaplastic thyroid carcinoma: improved survival in subgroups of patients with localized primary tumors. Head Neck 34, 230–237 (2012).

    Article  PubMed  Google Scholar 

  106. Swaak-Kragten, A. T., de Wilt, J. H., Schmitz, P. I., Bontenbal, M. & Levendag, P. C. Multimodality treatment for anaplastic thyroid carcinoma — treatment outcome in 75 patients. Radiother. Oncol. 92, 100–104 (2009).

    Article  PubMed  Google Scholar 

  107. Prasongsook, N. et al. Impact of aggressive combined-modality primary therapy in anaplastic thyroid carcinoma (ATC): an updated single-institution experience [abstract]. J. Clin. Oncol. 32, e17042 (2014).

    Article  Google Scholar 

  108. Smallridge, R. C. et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 22, 1104–1139 (2012).

    Article  PubMed  Google Scholar 

  109. Dziba, J. M., Marcinek, R., Venkataraman, G., Robinson, J. A. & Ain, K. B. Combretastatin A4 phosphate has primary antineoplastic activity against human anaplastic thyroid carcinoma cell lines and xenograft tumors. Thyroid 12, 1063–1070 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Sosa, J. A. et al. Randomized safety and efficacy study of fosbretabulin with paclitaxel/carboplatin against anaplastic thyroid carcinoma. Thyroid 24, 232–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Copland, J. A. et al. Novel high-affinity PPARγ agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene 25, 2304–2317 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Marlow, L. A. et al. Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth. Cancer Res. 69, 1536–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smallridge, R. C. et al. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase 1 trial. J. Clin. Endocrinol. Metab. 98, 2392–2400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. US National Library of Science. ClinicalTrials.gov[online], (2015).

  115. Isham, C. R. et al. Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer: role of aurora A and clinical translation. Sci. Transl. Med. 5, 1661a3 (2013).

    Article  CAS  Google Scholar 

  116. US National Library of Science. ClinicalTrials.gov[online], (2016).

  117. Rosove, M. H., Peddi, P. F. & Glaspy, J. A. BRAF V600E inhibition in anaplastic thyroid cancer. N. Engl. J. Med. 368, 684–685 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Godbert, Y. et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J. Clin. Oncol. 33, e84–e87 (2015).

    Article  PubMed  Google Scholar 

  119. Wagle, N. et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med. 371, 1426–1433 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Takahashi, S. et al. Study of lenvatinib, a multitargeted tyrosine kinase inhibitor, in patients with all histologic subtypes of advanced thyroid cancer (differentiated, medullary, and anaplastic). Ann. Oncol. 25 (Suppl 4), iv340–iv356 (2014).

    Google Scholar 

  121. Roemeling, C. A. et al. Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J. Clin. Endocrinol. Metab. 100, E697–E709 (2015).

    Article  CAS  Google Scholar 

  122. Kondo, T., Ezzat, S. & Asa, S. L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer 6, 292–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Smallridge, R. C., Marlow, L. A. & Copland, J. A. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr. Relat. Cancer 16, 17–44 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.C.B. and M.R. identified and evaluated literature and meeting presentations for inclusion in the article and wrote the manuscript. Both authors made substantial contributions to discussions of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Keith C. Bible.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bible, K., Ryder, M. Evolving molecularly targeted therapies for advanced-stage thyroid cancers. Nat Rev Clin Oncol 13, 403–416 (2016). https://doi.org/10.1038/nrclinonc.2016.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing