Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of residual disease after neoadjuvant therapy for breast cancer

Key Points

  • Neoadjuvant therapy (NAT) provides a unique opportunity to assess the response of patients with breast cancer to different treatments

  • Standards for pathological examination need to be standardized in order to enable reproducible evaluation of the residual disease that persists after NAT

  • Residual disease remaining after NAT is different from treatment-naive breast cancer

  • 'Classic' histopathological parameters, such as ypTNM, grade, mitotic index, and hormone-receptor, HER2 and Ki67 status, provide valuable prognostic and predictive information when assessed in residual breast cancer tissue after NAT

  • Genomic and proteomic markers of residual breast cancer are currently under development, and might inform patient stratification for adjuvant treatment

  • Immune markers are among the most-promising biomarkers in the post NAT setting, in which extensive tumour infiltration by lymphocytes indicates a good prognosis, irrespective of residual tumour size

Abstract

Nowadays, the decision of which adjuvant treatment should be given to patients with residual breast cancer after neoadjuvant therapy is based on the initial, pretreatment breast cancer molecular subtype and on the estimated residual tumour burden after neoadjuvant therapy. Substantial biological differences exist, however, between treatment-naive breast cancer and the residual tissue that remains after neoadjuvant therapy. In addition, the evaluation of relapse risk in patients is subject to a lack of uniformity in pathological qualification and quantification of remnant breast cancer following neoadjuvant treatment. In this Review, we present the recent recommendations for standardized evaluation of response to neoadjuvant therapy in patients with breast cancer, followed by a comprehensive overview of the pathobiological features of the residual disease after neoadjuvant therapy, which could serve as prognostic biomarkers or guide the choice of targeted adjuvant approaches. These biomarker candidates are at different stages of development, but some already have demonstrated superior prognostic value compared with biomarkers derived from pretreatment breast-cancer characteristics. The evidence presented herein indicates that further research on the biology of breast cancer that persists after neoadjuvant therapy is necessary to improve the management of this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

References

  1. Lakhani, S. R., Ellis, I. O., Schnitt, S. J., Tan, P. H. & van de Vijver, M. J. WHO Classification of Tumours of the Breast (IARC Press, 2012).

    Google Scholar 

  2. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Goldhirsch, A. et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 24, 2206–2223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zardavas, D., Irrthum, A., Swanton, C. & Piccart, M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12, 381–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    Article  PubMed  Google Scholar 

  6. Cortazar, P. & Geyer, C. E. Jr. Pathological complete response in neoadjuvant treatment of breast cancer. Ann. Surg. Oncol. 22, 1441–1446 (2015).

    Article  PubMed  Google Scholar 

  7. Esserman, L. J. & Woodcock, J. Accelerating identification and regulatory approval of investigational cancer drugs. JAMA 306, 2608–2609 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. US Food and Drug Administration. Guidance for industry. Pathological complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval. [online], (2014).

  9. Kim, S. New and emerging factors in tumorigenesis: an overview. Cancer Manag. Res. 7, 225–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmitt, M. W., Loeb, L. A. & Salk, J. J. The influence of subclonal resistance mutations on targeted cancer therapy. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2015.175 (2015).

  11. Balko, J. M. et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 4, 232–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Bossuyt, V. et al. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Ann. Oncol. 26, 1280–1291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Provenzano, E. et al. Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group. Mod. Pathol. 28, 1185–1201 (2015).

    Article  PubMed  Google Scholar 

  14. Wang, S. et al. Shrink pattern of breast cancer after neoadjuvant chemotherapy and its correlation with clinical pathological factors. World J. Surg. Oncol. 11, 166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim, T. H. et al. Magnetic resonance imaging patterns of tumor regression after neoadjuvant chemotherapy in breast cancer patients: correlation with pathological response grading system based on tumor cellularity. J. Comput. Assist. Tomogr. 36, 200–206 (2012).

    Article  PubMed  Google Scholar 

  16. Tomida, K. et al. Magnetic resonance imaging shrinkage patterns following neoadjuvant chemotherapy for breast carcinomas with an emphasis on the radiopathological correlations. Mol. Clin. Oncol. 2, 783–788 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Groheux, D. et al. HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br. J. Cancer 109, 1157–1164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Groheux, D. et al. Baseline tumor 18F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2 breast cancer. J. Nucl. Med. 56, 824–831 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Coudert, B. et al. Use of [18F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [18F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. Lancet Oncol. 15, 1493–1502 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Groheux, D. et al. Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur. J. Nucl. Med. Mol. Imaging 42, 377–385 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Edge, S. B. et al. AJCC Cancer Staging Manual (Springer, 2010).

    Google Scholar 

  22. Carder, P. Typing breast cancer following primary chemotherapy. Histopathology 35, 584–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Sataloff, D. M. et al. Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J. Am. Coll. Surg. 180, 297–306 (1995).

    CAS  PubMed  Google Scholar 

  24. Pinder, S. E., Provenzano, E., Earl, H. & Ellis, I. O. Laboratory handling and histology reporting of breast specimens from patients who have received neoadjuvant chemotherapy. Histopathology 50, 409–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

    Article  PubMed  Google Scholar 

  26. Chevallier, B., Roche, H., Olivier, J. P., Chollet, P. & Hurteloup, P. Inflammatory breast cancer. Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am. J. Clin. Oncol. 16, 223–228 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Rouzier, R. et al. Incidence and prognostic significance of complete axillary downstaging after primary chemotherapy in breast cancer patients with T1 to T3 tumors and cytologically proven axillary metastatic lymph nodes. J. Clin. Oncol. 20, 1304–1310 (2002).

    Article  PubMed  Google Scholar 

  28. Sharkey, F. E., Addington, S. L., Fowler, L. J., Page, C. P. & Cruz, A. B. Effects of preoperative chemotherapy on the morphology of resectable breast carcinoma. Mod. Pathol. 9, 893–900 (1996).

    CAS  PubMed  Google Scholar 

  29. Ogston, K. N. et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12, 320–327 (2003).

    Article  PubMed  Google Scholar 

  30. von Minckwitz, G. et al. Dose-dense doxorubicin, docetaxel, and granulocyte colony-stimulating factor support with or without tamoxifen as preoperative therapy in patients with operable carcinoma of the breast: a randomized, controlled, open phase IIb study. J. Clin. Oncol. 19, 3506–3515 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kurosumi, M. Significance and problems in evaluations of pathological responses to neoadjuvant therapy for breast cancer. Breast Cancer 13, 254–259 (2006).

    Article  PubMed  Google Scholar 

  32. Fisher, E. R. et al. Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and Bowel (NSABP) protocol B-18. Cancer 95, 681–695 (2002).

    Article  PubMed  Google Scholar 

  33. Honkoop, A. H. et al. Effects of chemotherapy on pathologic and biologic characteristics of locally advanced breast cancer. Am. J. Clin. Pathol. 107, 211–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Green, M. C. et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J. Clin. Oncol. 23, 5983–5992 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Kuerer, H. M. et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J. Clin. Oncol. 17, 460–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Feldman, L. D., Hortobagyi, G. N., Buzdar, A. U., Ames, F. C. & Blumenschein, G. R. Pathological assessment of response to induction chemotherapy in breast cancer. Cancer Res. 46, 2578–2581 (1986).

    CAS  PubMed  Google Scholar 

  37. von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).

    Article  PubMed  Google Scholar 

  38. Jones, R. L. et al. Pathological complete response and residual DCIS following neoadjuvant chemotherapy for breast carcinoma. Br. J. Cancer 94, 358–362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mazouni, C. et al. Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J. Clin. Oncol. 25, 2650–2655 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Penault-Llorca, F. et al. Comparison of the prognostic significance of Chevallier and Sataloff's pathologic classifications after neoadjuvant chemotherapy of operable breast cancer. Hum. Pathol. 39, 1221–1228 (2008).

    Article  PubMed  Google Scholar 

  41. Kaufmann, M. et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann. Surg. Oncol. 19, 1508–1516 (2012).

    Article  PubMed  Google Scholar 

  42. Simmons, C. E. et al. A Canadian national expert consensus on neoadjuvant therapy for breast cancer: linking practice to evidence and beyond. Curr. Oncol. 22, S43–S53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang-Lopez, Q. et al. Can pathologic complete response (pCR) be used as a surrogate marker of survival after neoadjuvant therapy for breast cancer? Crit. Rev. Oncol. Hematol. 95, 88–104 (2015).

    Article  PubMed  Google Scholar 

  44. Bonnefoi, H. et al. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial. Ann. Oncol. 25, 1128–1136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Esserman, L. J. et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL — CALGB 150007/150012, ACRIN 6657. J. Clin. Oncol. 30, 3242–3249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Peintinger, F. et al. Reproducibility of residual cancer burden for prognostic assessment of breast cancer after neoadjuvant chemotherapy. Mod. Pathol. 28, 913–920 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Chollet, P. et al. A new prognostic classification after primary chemotherapy for breast cancer: residual disease in breast and nodes (RDBN). Cancer J. 14, 128–132 (2008).

    Article  PubMed  Google Scholar 

  49. Bear, H. D. et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 24, 2019–2027 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Mamounas, E. P. et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J. Clin. Oncol. 30, 3960–3966 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Le Doussal, V. et al. Prognostic value of histologic grade nuclear components of Scarff–Bloom–Richardson (SBR). An improved score modification based on a multivariate analysis of 1262 invasive ductal breast carcinomas. Cancer 64, 1914–1921 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Abrial, S. C. et al. High prognostic significance of residual disease after neoadjuvant chemotherapy: a retrospective study in 710 patients with operable breast cancer. Breast Cancer Res. Treat. 94, 255–263 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. Penault-Llorca, F. et al. Changes and predictive and prognostic value of the mitotic index, Ki-67, cyclin D1, and cyclo-oxygenase-2 in 710 operable breast cancer patients treated with neoadjuvant chemotherapy. Oncologist 13, 1235–1245 (2008).

    Article  PubMed  Google Scholar 

  54. Diaz, J. et al. Mitotic counts in breast cancer after neoadjuvant systemic chemotherapy and development of metastatic disease. Breast Cancer Res. Treat. 138, 91–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Beresford, M. J., Wilson, G. D. & Makris, A. Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Res. 8, 216 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yerushalmi, R., Woods, R., Ravdin, P. M., Hayes, M. M. & Gelmon, K. A. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 11, 174–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Luporsi, E. et al. Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Res. Treat. 132, 895–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Dowsett, M. et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J. Natl Cancer Inst. 99, 167–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Jones, R. L. et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat. 116, 53–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Ellis, M. J. et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J. Natl Cancer Inst. 100, 1380–1388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suman, V. J., Ellis, M. J. & Ma, C. X. The ALTERNATE trial: assessing a biomarker driven strategy for the treatment of post-menopausal women with ER+/Her2– invasive breast cancer. Chin. Clin. Oncol. 4, 34 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Sheri, A. et al. Residual proliferative cancer burden to predict long-term outcome following neoadjuvant chemotherapy. Ann. Oncol. 26, 75–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. von Minckwitz, G. et al. Ki67 measured after neoadjuvant chemotherapy for primary breast cancer. Clin. Cancer Res. 19, 4521–4531 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Dowsett, M. et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl Cancer Inst. 103, 1656–1664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Polley, M. Y. et al. An international Ki67 reproducibility study. J. Natl Cancer Inst. 105, 1897–1906 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Polley, M. Y. et al. An international study to increase concordance in Ki67 scoring. Mod. Pathol. 28, 778–786 (2015).

    Article  PubMed  Google Scholar 

  67. van de Ven, S., Smit, V. T., Dekker, T. J., Nortier, J. W. & Kroep, J. R. Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat. Rev. 37, 422–430 (2011).

    CAS  PubMed  Google Scholar 

  68. Zhang, N., Moran, M. S., Huo, Q., Haffty, B. G. & Yang, Q. The hormonal receptor status in breast cancer can be altered by neoadjuvant chemotherapy: a meta-analysis. Cancer Invest. 29, 594–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Hirata, T. et al. Change in the hormone receptor status following administration of neoadjuvant chemotherapy and its impact on the long-term outcome in patients with primary breast cancer. Br. J. Cancer 101, 1529–1536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tacca, O. et al. Changes in and prognostic value of hormone receptor status in a series of operable breast cancer patients treated with neoadjuvant chemotherapy. Oncologist 12, 636–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Hurley, J. et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J. Clin. Oncol. 24, 1831–1838 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Mittendorf, E. A. et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res. 15, 7381–7388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jin, X. et al. Prognostic value of receptor conversion after neoadjuvant chemotherapy in breast cancer patients: a prospective observational study. Oncotarget 6, 9600–9611 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Guarneri, V. et al. Loss of HER2 positivity and prognosis after neoadjuvant therapy in HER2-positive breast cancer patients. Ann. Oncol. 24, 2990–2994 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Hanna, W. M. et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod. Pathol. 27, 4–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Ng, C. K. et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol. 16, 107 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Pernas Simon, S. Neoadjuvant therapy of early stage human epidermal growth factor receptor 2 positive breast cancer: latest evidence and clinical implications. Ther. Adv. Med. Oncol. 6, 210–221 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Giuliano, M. et al. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy. Clin. Cancer Res. 21, 3995–4003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lim, S. K. et al. Impact of molecular subtype conversion of breast cancers after neoadjuvant chemotherapy on clinical outcome. Cancer Res. Treat. http://dx.doi.org/10.4143/crt.2014.262 (2015).

  80. Provenzano, E. et al. Standardization of pathologic evaluation and reporting of post-neoadjuvant specimens in breast cancer: recommendations from an international working group. Mod. Pathol. 28, 1185–1201 (2015).

    Article  PubMed  Google Scholar 

  81. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  82. Chen, M. B. et al. Value of TP53 status for predicting response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. PLoS ONE 7, e39655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Loibl, S. et al. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (HER2) therapy in primary HER2-overexpressing breast cancer. J. Clin. Oncol. 32, 3212–3220 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Majewski, I. J. et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J. Clin. Oncol. 33, 1334–1339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiang, Y. Z., Yu, K. D., Bao, J., Peng, W. T. & Shao, Z. M. Favorable prognostic impact in loss of TP53 and PIK3CA mutations after neoadjuvant chemotherapy in breast cancer. Cancer Res. 74, 3399–3407 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Yuan, H. et al. Association of PIK3CA mutation status before and after neoadjuvant chemotherapy with response to chemotherapy in women with breast cancer. Clin. Cancer Res. 21, 4365–4372 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez-Angulo, A. M. et al. Gene expression, molecular class changes, and pathway analysis after neoadjuvant systemic therapy for breast cancer. Clin. Cancer Res. 18, 1109–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dunbier, A. K. et al. Molecular profiling of aromatase inhibitor-treated postmenopausal breast tumors identifies immune-related correlates of resistance. Clin. Cancer Res. 19, 2775–2786 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Gao, Q. et al. Effect of aromatase inhibition on functional gene modules in estrogen receptor-positive breast cancer and their relationship with antiproliferative response. Clin. Cancer Res. 20, 2485–2494 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Balko, J. M. et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med. 18, 1052–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Podsypanina, K., Politi, K., Beverly, L. J. & Varmus, H. E. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc. Natl Acad. Sci. USA 105, 5242–5247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Han, G., Wang, Y. & Bi, W. C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK–ERK pathway. Oncol. Res. 20, 149–156 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Yu, K. D. et al. Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin. Cancer Res. 19, 2723–2733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Magbanua, M. J. et al. Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response. Breast Cancer Res. 17, 73 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chae, Y. K. & Gonzalez-Angulo, A. M. Implications of functional proteomics in breast cancer. Oncologist 19, 328–335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Masuda, M. & Yamada, T. Signaling pathway profiling by reverse-phase protein array for personalized cancer medicine. Biochim. Biophys. Acta 1854, 651–657 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez-Angulo, A. M. et al. Functional proteomics characterization of residual breast cancer after neoadjuvant systemic chemotherapy. Ann. Oncol. 24, 909–916 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Sohn, J. et al. Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Ann. Oncol. 24, 2522–2526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 25, 198–213 (2015).

    Article  PubMed  Google Scholar 

  102. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Issa-Nummer, Y. et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer — a substudy of the neoadjuvant GeparQuinto trial. PLoS ONE 8, e79775 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Loi, S. et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann. Oncol. 25, 1544–1550 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Denkert, C. et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 33, 983–991 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Demaria, S. et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin. Cancer Res. 7, 3025–3030 (2001).

    CAS  PubMed  Google Scholar 

  108. Ladoire, S. et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J. Pathol. 224, 389–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Facciabene, A., Motz, G. T. & Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 72, 2162–2171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jeruss, J. S. et al. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J. Clin. Oncol. 26, 246–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Aruga, T. et al. A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncol. Rep. 22, 273–278 (2009).

    CAS  PubMed  Google Scholar 

  113. Liu, F. et al. Peritumoral FOXP3+ regulatory T cell is sensitive to chemotherapy while intratumoral FOXP3+ regulatory T cell is prognostic predictor of breast cancer patients. Breast Cancer Res. Treat. 135, 459–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Garcia-Martinez, E. et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 16, 488 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mahmoud, S. M. et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011).

    Article  PubMed  Google Scholar 

  116. Liu, S. et al. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 14, R48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, Z. et al. Intratumoral CD8+ cytotoxic lymphocyte is a favorable prognostic marker in node-negative breast cancer. PLoS ONE 9, e95475 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ali, H. R. et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann. Oncol. 25, 1536–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dieci, M. V. et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol. 25, 611–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kepp, O. et al. Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis 14, 364–375 (2009).

    Article  PubMed  Google Scholar 

  122. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Mayer, I. A. et al. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 32, 1202–1209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Verstovsek, S. et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood 120, 1202–1209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Coupe, N. et al. PACMEL: a phase 1 dose escalation trial of trametinib (GSK1120212) in combination with paclitaxel. Eur. J. Cancer 51, 359–366 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor P. Chollet for initiating research on the evaluation and biology of residual breast cancer after neoadjuvant treatment some 20 years ago at Jean Perrin Comprehensive Cancer Centre in Clermont-Ferrand, France.

Author information

Authors and Affiliations

Authors

Contributions

F.P.-L. and N.R.-R. contributed equally to researching data for this article, discussions of content, writing the article and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Frederique Penault-Llorca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penault-Llorca, F., Radosevic-Robin, N. Biomarkers of residual disease after neoadjuvant therapy for breast cancer. Nat Rev Clin Oncol 13, 487–503 (2016). https://doi.org/10.1038/nrclinonc.2016.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer