Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Squamous-cell carcinoma of the anus: progress in radiotherapy treatment

Abstract

Chemoradiotherapy is the standard-of-care treatment of squamous-cell carcinoma of the anus (SCCA), and this has not changed in decades. Radiation doses of 50–60 Gy, as used in many phase III trials, result in substantial late morbidities and fail to control larger and node-positive tumours. Technological advances in radiation therapy are improving patient outcomes and quality of life, and should be applied to patients with SCCA. Modern techniques such as intensity-modulated radiotherapy (IMRT), rotational IMRT, image-guided radiotherapy using cone-beam CT, and stereotactic techniques have enabled smaller margins and highly conformal plans, resulting in decreased radiation doses to the organs at risk and ensuring a shorter overall treatment time. In this Perspectives article, the use of novel approaches to target delineation, optimized radiotherapy techniques, adaptive radiotherapy, dose-escalation with external-beam radiotherapy (EBRT) or brachytherapy, and the potential for modified fractionation are discussed in the context of SCCA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bilimoria, K. Y. et al. Outcomes and prognostic factors for squamous-cell carcinoma of the anal canal: analysis of patients from the National Cancer Data Base. Dis. Colon Rectum 52, 624–631 (2009).

    PubMed  Google Scholar 

  2. Bentzen, A. G. et al. Impaired health-related quality of life after chemoradiotherapy for anal cancer: late effects in a national cohort of 128 survivors. Acta Oncol. 52, 736–744 (2013).

    PubMed  Google Scholar 

  3. Das, P. et al. Predictors and patterns of recurrence after definitive chemoradiation for anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 794–800 (2007).

    PubMed  Google Scholar 

  4. Wright, J. L. et al. Squamous cell carcinoma of the anal canal: patterns and predictors of failure and implications for intensity-modulated radiation treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 78, 1064–1072 (2010).

    PubMed  Google Scholar 

  5. Sebag-Montefiore, D. et al. Three cytotoxic drugs combined with pelvic radiation and as maintenance chemotherapy for patients with squamous cell carcinoma of the anus (SCCA): long-term follow-up of a phase II pilot study using 5-fluorouracil, mitomycin C and cisplatin. Radiother. Oncol. 104, 155–160 (2012).

    CAS  PubMed  Google Scholar 

  6. Lambin, P. et al. Predicting outcomes in radiation oncology multi-factorial decisions support systems. Nat. Rev. Clin. Oncol. 10, 27–40 (2013).

    PubMed  Google Scholar 

  7. UKCCCR Anal Cancer Trial Working Party. Epidermoid anal cancer: results from the UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil and mitomycin. Lancet 348, 1049–1054 (1996).

  8. Flam, M. et al. Role of mitomycin in combination with fluorouracil and radiotherapy and of salvage chemoradiation in the definitive nonsurgical treatment of epidermoid carcinoma of the anal canal: results of a phase III randomized intergroup study. J. Clin. Oncol. 14, 2527–2539 (1996).

    CAS  PubMed  Google Scholar 

  9. Ajani, J. A. et al. Fluorouracil, mitomycin and radiotherapy versus fluorouracil, cisplatin and radiotherapy for carcinoma of the anal canal: a randomised controlled trial. JAMA 199, 1914–1921 (2008).

    Google Scholar 

  10. James, R. D. et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): a randomised, phase 3, open-label, 2 × 2 factorial trial. Lancet Oncol. 14, 516–524 (2013).

    CAS  PubMed  Google Scholar 

  11. Bentzen, A. G. et al. Faecal incontinence after chemoradiotherapy in anal cancer survivors: long-term results of a national cohort. Radiother. Oncol. 108, 55–60 (2013).

    PubMed  Google Scholar 

  12. Bartelink, H. et al. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol. 15, 2040–2049 (1997).

    CAS  PubMed  Google Scholar 

  13. Peiffert, D. et al. Induction chemotherapy and dose intensification of the radiation boost in locally advanced anal canal carcinoma: final analysis of the randomized UNICANCER ACCORD 03 Trial. J. Clin. Oncol. 30, 1941–1948 (2012).

    CAS  PubMed  Google Scholar 

  14. Glynne-Jones, R. et al. Anal cancer: ESMO–ESSO–ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Eur. J. Surg. Oncol. 40, 1165–1176 (2014).

    CAS  PubMed  Google Scholar 

  15. The National Comprehensive Cancer Network (NCCN). Clinical guidelines in oncology, Anal carcinoma, version 2. [online], (2013).

  16. Northover, J. et al. Chemoradiation for the treatment of epidermoid anal cancer: 13-year follow-up of the first randomised UKCCCR Anal Cancer Trial (ACT I). Br. J. Cancer 102, 1123–1128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Glynne-Jones, R. et al. 'Mind the gap' — the impact of variations in the duration of the treatment gap and overall treatment time in the first UK Anal Cancer Trial (ACT I). Int. J. Radiat. Oncol. Biol. Phys. 81, 1488–1494 (2011).

    PubMed  Google Scholar 

  18. Gunderson, L. L. et al. Long-term update of US GI Intergroup RTOG 98-11 phase III trial for anal carcinoma: survival, relapse and colostomy failure with concurrent chemoradiation involving fluorouracil/mitomycin versus fluoruracil/cisplatin. J. Clin. Oncol. 30, 4344–4351 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunderson, L. L. et al. Anal carcinoma: impact of TN category of disease on survival, disease relapse, and colostomy failure in US Gastrointestinal Intergroup RTOG 98-11 phase 3 trial. Int. J. Radiat. Oncol. Biol. Phys. 87, 638–645 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Das, P. et al. Long term quality of life after radiotherapy for the treatment of anal cancer. Cancer 116, 822–829 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Welzel, G. et al. Quality of life outcomes in patients with anal cancer after combined radiochemotherapy. Strahlenther. Onkol. 187, 175–182 (2011).

    PubMed  Google Scholar 

  22. Spithoff, K., Cummings, B., Jonker, D. & Biagi, J. J. Chemoradiotherapy for squamous cell cancer of the anal canal: a systematic review. Clin. Oncol. (R. Coll. Radiol.) 26, 473–487 (2014).

    CAS  Google Scholar 

  23. Wexler, A. et al. Invasive anal squamous-cell carcinoma in the HIV-positive patient: outcome in the era of highly active antiretroviral therapy. Dis. Colon Rectum 51, 73–81 (2008).

    PubMed  Google Scholar 

  24. Hauerstock, D., Ennis, D., Grossbard, M. & Evans, M. Efficacy and toxicity of chemoradiation in the treatment of HIV-associated anal cancer. Clin. Colorectal Cancer 9, 238–242 (2010).

    CAS  PubMed  Google Scholar 

  25. Fraunholz, I. B., Haberl, A., Klauke, S., Gute, P. & Rödel, C. M. Long-term effects of chemoradiotherapy for anal cancer in patients with HIV infection: oncological outcomes, immunological status, and the clinical course of the HIV disease. Dis. Colon Rectum 57, 423–431 (2014).

    PubMed  Google Scholar 

  26. Kachnic, L. A. et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal. Int. J. Radiat. Oncol. Biol. Phys. 86, 27–33 (2013).

    CAS  PubMed  Google Scholar 

  27. Weber, D. C., Kurtz, J. M. & Allal, A. S. The impact of gap duration on local control in anal canal carcinoma treated by split-course radiotherapy and concomitant chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 50, 675–680 (2001).

    CAS  PubMed  Google Scholar 

  28. Graf, R. et al. Impact of overall treatment time on local control of anal cancer treated with radiochemotherapy. Oncology 65, 14–22 (2003).

    CAS  PubMed  Google Scholar 

  29. Goh, V. et al. Magnetic resonance imaging assessment of squamous carcinoma of the anal canal before and after chemoradiation: can MRI predict for eventual clinical outcome? Int. J. Radiat. Oncol. Biol. Phys. 78, 715–721 (2010).

    PubMed  Google Scholar 

  30. Davey, P., Saibil, E. A. & Wong, R. Bipedal lymphography in the management of carcinoma of the anal canal. Br. J. Radiol. 69, 632–635 (1996).

    CAS  PubMed  Google Scholar 

  31. Chao, K. S. & Lin, M. Lymphangiogram-assisted lymph node target delineation for patients with gynecologic malignancies. Int. J. Radiat. Oncol. Biol. Phys. 54, 1147–1152 (2002).

    PubMed  Google Scholar 

  32. Hightower, B. M. & Judd, E. S. Squamous cell carcinoma of the anal canal and anus: current status of therapy. Mayo Clin. Proc. 42, 271 (1967).

    CAS  PubMed  Google Scholar 

  33. Stearns, M. W. Jr & Quan, S. H. Epidermoid carcinoma of the anorectum. Surg. Gynecol. Obstet. 131, 953–957 (1970).

    PubMed  Google Scholar 

  34. Beahrs, O. H. Management of cancer of the anus. AJR 133, 790–795 (1979).

    CAS  PubMed  Google Scholar 

  35. Aggarwal, A. et al. Clinical target volumes in anal cancer: calculating what dose was likely to have been delivered in the UK ACT II trial protocol. Radiother. Oncol. 103, 341–346 (2012).

    PubMed  Google Scholar 

  36. Garg, M. et al. Phase II trials of cetuximab (CX) plus cisplatin (CDDP), 5-fluorouracil (5-FU) and radiation (RT) in immunocompetent (ECOG 3205) and HIV-positive (AMC045) patients with squamous cell carcinoma of the anal canal (SCAC): safety and preliminary efficacy results. [abstract 4030], J. Clin. Oncol. 30, S15 (2012).

    Google Scholar 

  37. Olivatto, L. O. et al. Phase 1 study of cetuximab in combination with 5-fluorouracil, cisplatin, and radiotherapy in patients with locally advanced anal canal carcinoma. Cancer 119, 2973–2980 (2013).

    CAS  PubMed  Google Scholar 

  38. Deutsch, E. et al. Unexpected toxicity of cetuximab combined with conventional chemoradiotherapy in patients with locally advanced anal cancer: results of the UNICANCER ACCORD 16 phase II trial. Ann. Oncol. 24, 2834–2838 (2013).

    CAS  PubMed  Google Scholar 

  39. Levy, A. et al. Low response rate after cetuximab combined with conventional chemoradiotherapy in patients with locally advanced anal cancer: long-term results of the UNICANCER ACCORD 16 phase II trial. Radiother. Oncol. 114, 415–416 (2015).

    PubMed  Google Scholar 

  40. Jadon, R. et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin. Oncol. (R. Coll. Radiol.) 26, 185–196 (2014).

    CAS  Google Scholar 

  41. Grégoire, V. et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother. Oncol. 69, 227–236 (2003).

    PubMed  Google Scholar 

  42. Grégoire, V. et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother. Oncol. 110, 172–181 (2014).

    PubMed  Google Scholar 

  43. Mavroidis, P. et al. Consequences of anorectal cancer atlas implementation in the cooperative group setting: radiobiologic analysis of a prospective randomized in silico target delineation study. Radiother. Oncol. 112, 418–424 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Myerson, R. et al. Elective clinical target volumes for conformal therapy in anorectal cancer: an RTOG consensus panel contouring atlas. Int. J. Radiat. Oncol. Biol. Phys. 74, 824–830 (2009).

    PubMed  Google Scholar 

  45. Lengele, B. & Scalliet, P. Anatomical bases for the radiological delineation of lymph node areas. Part III: pelvis and lower limbs. Radiother. Oncol. 92, 22–33 (2009).

    PubMed  Google Scholar 

  46. Ng, M. et al. Australasian Gastrointestinal Trials Group (AGITG) contouring atlas and planning guidelines for intensity-modulated radiotherapy in anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 83, 1455–1462 (2012).

    PubMed  Google Scholar 

  47. Gay, H. A. et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int. J. Radiat. Oncol. Biol. Phys. 83, e353–e362 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Muirhead, R. et al. National guidance for IMRT in anal cancer. analimrtguidance [online], (2014).

    Google Scholar 

  49. Muirhead, R. Partridge, M. & Hawkins, M. A. A tumor control probability model for anal squamous cell carcinoma. Radiother. Oncol. 116, 192–196 (2015).

    PubMed  Google Scholar 

  50. Giraud, P. et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int. J. Radiat. Oncol. Biol. Phys. 48, 1015–1024 (2000).

    CAS  PubMed  Google Scholar 

  51. Ho, C. M., Ng, W. F., Lam, K. H., Wei, W. J. & Yuen, A. P. Submucosal tumor extension in hypopharyngeal cancer. Arch. Otolaryngol. Head Neck Surg. 123, 959–965 (1997).

    CAS  PubMed  Google Scholar 

  52. Hoffman, M. S. et al. Lateral microscopic extension of squamous cell carcinoma of the vulva. Gynecol. Oncol. 73, 72–75 (1999).

    CAS  PubMed  Google Scholar 

  53. Rohren, E., Turkington, T. & Coleman, R. Clinical applications of PET in oncology. Radiology 231, 305–332 (2004).

    PubMed  Google Scholar 

  54. Bar-Shalom, R. et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J. Nucl. Med. 44, 1200–1209 (2003).

    PubMed  Google Scholar 

  55. Grönroos, T. J. et al. Hypoxia, blood flow and metabolism in squamous-cell carcinoma of the head and neck: correlations between multiple immunohistochemical parameters and PET. BMC Cancer 14, 876 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    CAS  PubMed  Google Scholar 

  57. Guckenberger, M., Richter, A., Boda-Heggemann, J. & Lohr, F. Motion compensation in radiotherapy. Crit. Rev. Biomed. Eng. 40, 187–197 (2012).

    PubMed  Google Scholar 

  58. Mazeron, R. et al. Intrafractional organs movement in three-dimensional image-guided adaptive pulsed-dose-rate cervical cancer brachytherapy: assessment and dosimetric impact. Brachytherapy 14, 260–266 (2015).

    PubMed  Google Scholar 

  59. Trani, D. et al. What level of accuracy is achievable for preclinical dose painting studies on a clinical irradiation platform? Radiat. Res. 183, 501–510 (2015).

    CAS  PubMed  Google Scholar 

  60. Chow, J. C. & Jiang, R. Comparison of dosimetric variation between prostate IMRT and VMAT due to patient's weight loss: patient and phantom study. Rep. Pract. Oncol. Radiother. 18, 272–278 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Cummings, B. J., Keane, T. J., O'Sullivan, B., Wong, C. S. & Catton, C. N. Epidermoid anal cancer: treatment by radiation alone or by radiation and 5-fluorouracil with and without mitomycin C. Int. J. Radiat. Oncol. Biol. Phys. 21, 1115–1125 (1991).

    CAS  PubMed  Google Scholar 

  62. Marks, L. B. et al. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 76, S10–S19 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Kachnic, L. RTOG 0529 protocol information. Radiation Therapy Oncology Group [online], (2011).

    Google Scholar 

  64. Buettner, F. et al. The dose-response of the anal sphincter region — an analysis of data from the MRC RT01 trial. Radiother. Oncol. 103, 347–352 (2012).

    PubMed  Google Scholar 

  65. Peeters, S. T. et al. Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: normal tissue complication probability modeling. Int. J. Radiat. Oncol. Biol. Phys. 66, 11–19 (2006).

    PubMed  Google Scholar 

  66. Heemsbergen, W. D., Hoogeman, M. S., Hart, G. A., Lebesque, J. V. & Koper, P. C. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 1011–1018 (2005).

    PubMed  Google Scholar 

  67. Vordermark, D. et al. Association of anorectal dose-volume histograms and impaired fecal continence after 3D conformal radiotherapy for carcinoma of the prostate. Radiother. Oncol. 69, 209–214 (2003).

    PubMed  Google Scholar 

  68. Chen, Y. J. et al. Organ sparing by conformal avoidance intensity-modulated radiation therapy for anal cancer: dosimetric evaluation of coverage of pelvis and inguinal/femoral nodes. Int. J. Radiat. Oncol. Biol. Phys. 63, 274–281 (2005).

    PubMed  Google Scholar 

  69. Stieler, F. et al. A fast radiotherapy paradigm for anal cancer with volumetric modulated arc therapy (VMAT). Radiat. Oncol. 25, 48 (2009).

    Google Scholar 

  70. Tsai, H. K. et al. Dosimetric comparison of dose-painted intensity modulated radiation therapy versus conventional radiation therapy for anal cancer. [abstract 388], J. Clin. Oncol. 24, S18 (2006).

    Google Scholar 

  71. Bazan, J. G. et al. Intensity-modulated radiation therapy versus conventional radiation therapy for squamous cell carcinoma of the anal canal. Cancer 117, 3342–3351 (2011).

    PubMed  Google Scholar 

  72. Chuong, M. D. et al. Intensity-modulated radiation therapy versus 3D conformal radiation therapy for squamous cell carcinoma of the anal canal. Gastrointest. Cancer Res. 9, 39–45 (2013).

    Google Scholar 

  73. Dasgupta, T. et al. Intensity-modulated radiotherapy versus conventional radiotherapy in the treatment of anal squamous cell carcinoma: a propensity score analysis. Radiother. Oncol. 107, 189–194 (2013).

    PubMed  Google Scholar 

  74. Kachnic, L. A. et al. Dose-painted intensity-modulated radiation therapy for anal cancer: a multi-institutional report of acute toxicity and response to therapy. Int. J. Radiat. Oncol. Biol. Phys. 82, 153–158 (2012).

    PubMed  Google Scholar 

  75. Pepek, J. M. et al. Intensity-modulated radiation therapy for anal malignancies: a preliminary toxicity and disease outcomes analysis. Int. J. Radiat. Oncol. Biol. Phys. 78, 1413–1419 (2010).

    PubMed  Google Scholar 

  76. Han, K. et al. Prospective evaluation of acute toxicity and quality of life after IMRT and concurrent chemotherapy for anal cancer and peri-anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 90, 587–594 (2014).

    PubMed  Google Scholar 

  77. Deenen, M. J. et al. Simultaneous integrated boost-intensity modulated radiation therapy with concomitant capecitabine and mitomycin C for locally advanced anal carcinoma: a phase 1 study. Int. J. Radiat. Oncol. Biol. Phys. 85, e201–e207 (2013).

    CAS  PubMed  Google Scholar 

  78. Eng, C. et al. Phase II study of capecitabine and oxaliplatin with concurrent radiation therapy (XELOX-XRT) for squamous cell carcinoma of the anal canal. [abstract 4116], J. Clin. Oncol. 27, S15 (2009).

    Google Scholar 

  79. Ugurluer, G. et al. Helical tomotherapy for the treatment of anal canal cancer: a dosimetric comparison with 3D conformal radiotherapy. Tumori 101, 268–272 (2015).

    CAS  PubMed  Google Scholar 

  80. Vieillot, S. et al. Plan comparison of volumetric modulated arc therapy (RapidArc) and conventional intensity modulated radiation therapy (IMRT) in anal canal cancer. Radiat. Oncol. 5, 92 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Cendales, R. et al. IMRT, RapidArc® and conformal radiotherapy in the treatment of tumours of the anal canal. ecancer 8, 469 (2014).

    Google Scholar 

  82. Tozzi, A. et al. Radiation therapy of anal canal cancer: from conformal therapy to volumetric modulated arc therapy. BMC Cancer 14, 833 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Kaufman, N. et al. Remote afterloading intraluminal brachytherapy in the treatment of rectal, rectosigmoid, and anal cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 17, 663–668 (1989).

    CAS  PubMed  Google Scholar 

  84. Moureau-Zabotto, L. et al. Role of brachytherapy in the boost management of anal carcinoma with node involvement (CORS-03 study). Int. J. Radiat. Oncol. Biol. Phys. 85, e135–e142 (2013).

    PubMed  Google Scholar 

  85. Lestrade, L. et al. Role of brachytherapy in the treatment of cancers of the anal canal: long-term follow-up and multivariate analysis of a large monocentric retrospective series. Strahlenther. Onkol. 190, 546–554 (2014).

    PubMed  Google Scholar 

  86. Bruna, A. et al. Treatment of squamous cell anal canal carcinoma (SCACC) with pulsed dose rate brachytherapy: a retrospective study. Radiother. Oncol. 79, 75–79 (2006).

    PubMed  Google Scholar 

  87. Berger, C. et al. Conservative treatment of anal canal carcinoma with external radiotherapy and interstitial brachytherapy, with or without chemotherapy: long-term results. Cancer Radiother. 3, 461–467 (1999).

    CAS  PubMed  Google Scholar 

  88. Papillon, J., Montbarbon, J. F., Gerard, J. P., Chassard, J. L. & Ardiet, J. M. Interstitial curietherapy in the conservative treatment of anal and rectal cancers. Int. J. Radiat. Oncol. Biol. Phys. 17, 1161–1169 (1989).

    CAS  PubMed  Google Scholar 

  89. Mazeron, J. J. & van Limbergen, E. in Anorectal Cancer in the GECESTROH and Book of Brachy Therapy (eds Gerbaulet, A. et al.) 505–514 (ESTRO, 2000).

    Google Scholar 

  90. Niehoff, P. & Kovacs, G. HDR brachytherapy for anal cancer. J. Gastrointest. Oncol. 5, 218–222 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Oblak, I. et al. Long term outcome after combined modality treatment for anal cancer. Radiol. Oncol. 46, 145–152 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Hannoun-Levi, J. M. et al. High-dose split-course radiation therapy for anal cancer: outcome analysis regarding the boost strategy (CORS-03 study). Int. J. Radiat. Oncol. Biol. Phys. 80, 712–720 (2011).

    PubMed  Google Scholar 

  93. Herman, J. M. et al. ACR Appropriateness Criteria® — anal cancer. Gastrointest. Cancer Res. 7, 4–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Renehan, A. G., Saunders, M. P., Schofield, P. F. & O'Dwyer, S. T. Patterns of local disease failure and outcome after salvage surgery in patients with anal cancer. Br. J. Surg. 92, 605–614 (2005).

    CAS  PubMed  Google Scholar 

  95. Ferrigno, R. et al. Radiochemotherapy in the conservative treatment of anal canal carcinoma: retrospective analysis of results and radiation dose effectiveness. Int. J. Radiat. Oncol. Biol. Phys. 61, 1136 (2005).

    PubMed  Google Scholar 

  96. Huang, K., Haas-Kogan, D., Weinberg, V. & Krieg, R. Higher radiation dose with a shorter treatment duration improves outcome for locally advanced carcinoma of anal canal. World J. Gastroenterol. 13, 895–900 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. Rich, T. A. et al. Chemoradiation therapy for anal cancer: radiation plus continuous infusion of 5-fluorouracil with or without cisplatin. Radiother. Oncol. 27, 209–215 (1993).

    CAS  PubMed  Google Scholar 

  98. Leichman, L. et al. Cancer of the anal canal. Model for preoperative adjuvant combined modality therapy. Am. J. Med. 78, 211–215 (1985).

    CAS  PubMed  Google Scholar 

  99. Hatfield, P. et al. Involved-field, low-dose chemoradiotherapy for early-stage anal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 70, 419–424 (2008).

    CAS  PubMed  Google Scholar 

  100. University of Leeds. Solid tumours. Leeds Institute of Clinical Trials Research [online], (2015).

  101. John, M. et al. Dose-escalation in chemoradiation for anal cancer: preliminary results of RTOG 92-08. Cancer J. Sci. Am. 2, 205–211 (1996).

    CAS  PubMed  Google Scholar 

  102. Konski, A. et al. Evaluation of planned treatment breaks during radiation therapy for anal cancer: update of RTOG 92-08. Int. J. Radiat. Oncol. Biol. Phys. 72, 114–118 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Minsky, B. D. Pajak, T. F. & Ginsberg, R. J. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J. Clin. Oncol. 20, 1167–1174 (2002).

    CAS  PubMed  Google Scholar 

  104. Bradley, J. D. et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16, 187–199 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sebag-Montefiore, D. et al. The pattern and timing of disease recurrence in squamous cancer of the anus: mature results from the NCRI ACT II trial. [abstract 4029], J. Clin. Oncol. S30 (2012).

  106. Maciá, I. et al. Compliance to the prescribed overall treatment time (OTT) of curative radiotherapy in normal clinical practice and impact on treatment duration of counteracting short interruptions by treating patients on saturdays. Clin. Transl. Oncol. 11, 302–311 (2009).

    Google Scholar 

  107. Dale, R. G. et al. Practical methods for compensating for missed treatment days in radiotherapy, with particular reference to head and neck schedules. Clin. Oncol. (R. Coll. Radiol.) 14, 382–393 (2002).

    CAS  Google Scholar 

  108. Huang, Z. et al. Onset time of tumor repopulation for cervical cancer: first evidence from clinical data. Int. J. Radiat. Oncol. Biol. Phys. 84, 478–484 (2012).

    PubMed  PubMed Central  Google Scholar 

  109. Taylor, J. M., Withers, H. R. & Mendenhall, W. M. Dose-time considerations of head and neck squamous cell carcinomas treated with irradiation. Radiother. Oncol. 17, 95–102 (1990).

    CAS  PubMed  Google Scholar 

  110. Broens, P., Van Limbergen, E., Penninckx, F. & Kerremans, R. Clinical and manometric effects of combined external beam irradiation and brachytherapy for anal cancer. Int. J. Colorect. Dis. 13, 68–72 (1998).

    CAS  Google Scholar 

  111. Tumor-related and treatment-related colostomy-free survival (CFS) following chemoradiation (CRT) using mitomycin (MMC) or cisplatin (CisP), with or without maintenance 5FU/CisP chemotherapy (CT) in squamous cell carcinoma of the anus (SCCA): results of ACT II. [abstract 3532], J. Clin. Oncol. 31, S1 (2013).

  112. Nguyen, L. N. & Ang, K. K. Radiotherapy for cancer of the head and neck: altered fractionation regimens. Lancet Oncol. 3, 693–701 (2002).

    PubMed  Google Scholar 

  113. Bourhis, J. et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368, 843–854 (2006).

    PubMed  Google Scholar 

  114. Baujat, B. et al. Hyperfractionated or accelerated radiotherapy for head and neck cancer. Cochrane Database Syst. Rev. 12, CD002026 (2010).

    Google Scholar 

  115. Macchia, G. et al. Concomitant boost plus large-field preoperative chemoradiation in locally advanced uterine cervix carcinoma: Phase II clinical trial final results (LARA-CC-1). Gynecol. Oncol. 125, 594–599 (2012).

    PubMed  Google Scholar 

  116. Budach, W. et al. Mitomycin C in combination with radiotherapy as a potent inhibitor of tumour cell repopulation in a human squamous cell carcinoma. Br. J. Cancer. 86, 470–476 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Corvò, R. et al. In vivo cell kinetics in head and neck squamous cell carcinomas predicts local control and helps guide radiotherapy regimen. J. Clin. Oncol. 13, 1843–1850 (1995).

    PubMed  Google Scholar 

  118. Fowler, J. F., Harari, P. M., Leborgne, F. & Leborgne, J. H. Acute radiation reactions in oral and pharyngeal mucosa: tolerable levels in altered fractionation schedules. Radiother. Oncol. 69, 161–168 (2003).

    PubMed  Google Scholar 

  119. Mortensen, H. R., Overgaard, J. & Specht, L. Prevalence and peak incidence of acute and late normal tissue morbidity in the DAHANCA 6&7 randomised trial with accelerated radiotherapy for head and neck cancer. Radiother. Oncol. 103, 69–75 (2012).

    PubMed  Google Scholar 

  120. Meyer, J. et al. Advanced radiation therapy technologies in the treatment of rectal and anal cancer: intensity-modulated photon therapy and proton therapy. Clin. Colorectal Cancer 6, 348–356 (2007).

    CAS  PubMed  Google Scholar 

  121. Colaco, R. J. et al. Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer. J. Gastrointest. Oncol. 5, 3–8 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Simpson, D. R. et al. Normal tissue complication probability analysis of acute gastrointestinal toxicity in cervical cancer patients undergoing intensity modulated radiation therapy and concurrent cisplatin. Int. J. Radiat. Oncol. Biol. Phys. 83, e81–e86 (2012).

    PubMed  Google Scholar 

  123. Martenson, J. A. et al. Results of combined modality therapy for patients with anal cancer (E7283): an Eastern Cooperative Oncology Group study. Cancer 76, 1731–1736 (1995).

    CAS  PubMed  Google Scholar 

  124. Martenson, J. A. et al. Initial results of a Phase II trial of high dose radiation therapy, 5-fluorouracil, and cisplatin for patients with anal cancer (E4292). Int. J. Radiat. Oncol. Biol. Phys. 35, 745–749 (1996).

    CAS  PubMed  Google Scholar 

  125. Chakravarthy, A. B. et al. Long-term follow-up of a Phase II trial of high-dose radiation with concurrent 5-fluorouracil and cisplatin in patients with anal cancer (ECOG E4292). Int. J. Radiat. Oncol. Biol. Phys. 81, e607–e613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Crehange, G. et al. Combining cisplatin and mitomycin with radiotherapy in anal carcinoma. Dis. Colon Rectum 50, 43–49 (2007).

    PubMed  Google Scholar 

  127. Matzinger, O. et al. Mitomycin C with continuous fluorouracil or with cisplatin in combination with radiotherapy for locally advanced anal cancer (European Organisation for Research and Treatment of Cancer Phase II study 22011-40014). Eur. J. Cancer 45, 2782–2791 (2009).

    CAS  PubMed  Google Scholar 

  128. Sischy, B. et al. Definitive irradiation and chemotherapy for radiosensitization in management of anal carcinoma: interim report on Radiation Therapy Oncology Group study no 8314. J. Natl Cancer Inst. 81, 850–856 (1989).

    CAS  PubMed  Google Scholar 

  129. Gerard, J. P., Romestaing, P., Mahe, M. & Salerno, N. Cancer du canal anal: role de l'association 5-FU-cisplatinum [French]. Lyon Chir. 87, 74 (1991).

    Google Scholar 

  130. Peiffert, D. et al. High-dose radiation therapy and neoadjuvant plus concomitant chemotherapy with 5-fluorouracil and cisplatin in patients with locally advanced squamous-cell anal carcinoma: final results of a phase II study. Ann. Oncol. 12, 397–404 (2001).

    CAS  PubMed  Google Scholar 

  131. Doci, R. et al. Primary chemoradiation therapy with fluorouracil and cisplatin for cancer of the anus: results in 35 consecutive patients. J. Clin. Oncol. 14, 3121–3125 (1996).

    CAS  PubMed  Google Scholar 

  132. Bosset, J. F. et al. Shortened irradiation schedule, continuous infusion of 5-fluorouracil and fractionation of mitomycin C in locally advanced anal carcinomas. Results of a phase II study of the European Organization for Research and Treatment of Cancer. Radiotherapy and Gastrointestinal Cooperative Groups. Eur. J. Cancer 39, 45–51 (2003).

    CAS  PubMed  Google Scholar 

  133. Matthews, J. H. et al. T1-2 anal carcinoma requires elective inguinal radiation treatment — the results of Trans Tasman Radiation Oncology Group study TROG 99.02. Radiother. Oncol. 98, 93–98 (2011).

    PubMed  Google Scholar 

  134. Glynne-Jones, R. et al. EXTRA — a multicenter phase II study of chemoradiation using a 5 day per week oral regimen of capecitabine and intravenous mitomycin in anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, 119–126 (2008).

    CAS  PubMed  Google Scholar 

  135. Meropol, N. J. et al. Induction therapy for poor-prognosis anal canal carcinoma: a Phase II study of the cancer and Leukemia Group B (CALGB 9281). J. Clin. Oncol. 26, 3229–3234 (2008).

    CAS  PubMed  Google Scholar 

  136. Vuong, T., Devic, S., Belliveau, P., Muanza, T. & Hegyi, G. Contribution of conformal therapy in the treatment of anal canal carcinoma with combined chemotherapy and radiotherapy: results of a Phase II study. Int. J. Radiat. Oncol. Biol. Phys. 56, 823–831 (2003).

    PubMed  Google Scholar 

  137. Vaz, F. et al. Sequential and concomitant chemoradiation (CTR) therapy with flurouracil (5FU) and cisplatin (CDDP) for anal squamous cell carcinoma (ASCC). [abstract 1173], J. Clin. Oncol. 17, 304 (1998).

    Google Scholar 

  138. Garg, M. et al. Phase II trials of cetuximab (CX) plus cisplatin (CDDP), 5-fluorouracil (5-FU) and radiation (RT) in immunocompetent (ECOG 3205) and HIV-positive (AMC045) patients with squamous cell carcinoma of the anal canal (SCAC): safety and preliminary efficacy results. [abstract 4030], J. Clin. Oncol. 30, S15 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this article, made a substantial contribution to discussions of content and to writing the manuscript, R.G.–J. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Rob Glynne-Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glynne-Jones, R., Tan, D., Hughes, R. et al. Squamous-cell carcinoma of the anus: progress in radiotherapy treatment. Nat Rev Clin Oncol 13, 447–459 (2016). https://doi.org/10.1038/nrclinonc.2015.218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing