Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Population genetic testing for cancer susceptibility: founder mutations to genomes

This article has been updated

Key Points

  • Traditional methods of identifying high-risk mutations in cancer-susceptibility genes (CSGs), with eligibility focused on family history, are laborious and can exclude more than half of all mutation carriers in a population

  • Population-based CSG testing offers an alternative approach whereby genetic testing is offered directly to all persons in a specified age range and/or population group, regardless of personal or family history of cancer

  • Population-based testing has proven cost-effective and acceptable to participants in studies of BRCA1/2 founder (ancestral) mutations in specified populations or ethnic subgroups wherein a narrow range of mutations account for most CSG mutations in the population

  • Extending population-based genetic testing to other populations would pose considerable financial challenges in terms of the costs of the genetic-testing infrastructure, irrespective of the decreasing costs of DNA sequencing

  • Developing infrastructures for population-based testing of BRCA1/2 offers the opportunity for broader CSG testing at limited additional cost; a panel-based approach focusing on a restricted number of highly penetrant mutations might currently be the most-acceptable strategy

  • CSG testing might shift from bespoke tests towards whole-genome or whole-exome analysis as part of comprehensive population-wide programmes; incorporating such testing into health-care systems, with equitable access for the entire population, will be challenging

Abstract

The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Change history

  • 18 December 2015

    In the version of this Review originally posted online, reference 48 was inaccurately cited in Box 1, instead of reference 65. This error has now been corrected in the print and online versions of the article.

References

  1. Ball, D. M. & Harper, P. S. Presymptomatic testing for late-onset genetic disorders: lessons from Huntington's disease. FASEB J. 6, 2818–2819 (1992).

    CAS  Article  PubMed  Google Scholar 

  2. Hilbers, F. S., Vreeswijk, M. P., van Asperen, C. J. & Devilee, P. The impact of next generation sequencing on the analysis of breast cancer susceptibility: a role for extremely rare genetic variation? Clin. Genet. 84, 407–414 (2013).

    CAS  Article  PubMed  Google Scholar 

  3. Pilgrim, S. M., Pain, S. J. & Tischkowitz, M. D. Opportunities and challenges of next-generation DNA sequencing for breast units. Br. J. Surg. 101, 889–898 (2014).

    CAS  Article  PubMed  Google Scholar 

  4. Passaperuma, K. et al. Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br. J. Cancer 107, 24–30 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Metcalfe, K. et al. Contralateral mastectomy and survival after breast cancer in carriers of BRCA1 and BRCA2 mutations: retrospective analysis. BMJ 348, g226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Narod, S. A. et al. Oral contraceptives and the risk of hereditary ovarian cancer. Hereditary Ovarian Cancer Clinical Study Group. N. Engl. J. Med. 339, 424–428 (1998).

    CAS  Article  PubMed  Google Scholar 

  7. Burn, J. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378, 2081–2087 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Agurs-Collins, T. et al. Public awareness of direct-to-consumer genetic tests: findings from the 2013 U. S. Health Information National Trends Survey. J. Cancer Educ. http://dx.doi.org/10.1007/s13187-014-0784-x (2015).

  9. Color Genomics. 19 gene panel for hereditary breast and ovarian cancer [online], (2015).

  10. Veritas Genetics. myBRCA: Hereditary Breast and Ovarian Cancer Screening [online], (2015).

  11. Potter, B. K., Avard, D. & Wilson, B. J. Newborn blood spot screening in four countries: stakeholder involvement. J. Public Health Policy 29, 121–142 (2008).

    Article  PubMed  Google Scholar 

  12. Wald, N. & Cuckle, H. Reporting the assessment of screening and diagnostic tests. Br. J. Obstet. Gynaecol. 96, 389–396 (1989).

    CAS  Article  PubMed  Google Scholar 

  13. Khoury, M., Burke, W. & Thompson, E. J. (eds) Genetics and Public Health in the 21st Century: Using Genetic Information to Improve Health and Prevent Disease (Oxford University Press, 2000).

    Book  Google Scholar 

  14. Scriver, C. R. Screening for medical intervention: the PKU experience. Prog. Clin. Biol. Res. 103, 437–445 (1982).

    PubMed  Google Scholar 

  15. US Preventive Services Task Force. Screening for phenylketonuria (PKU): US Preventive Services Task Force Reaffirmation recommendation. Ann. Fam. Med. 6, 166 (2008).

  16. Narod, S. A. & Foulkes, W. D. BRCA1 and BRCA2, 1994 and beyond. Nat. Rev. Cancer 4, 665–676 (2004).

    CAS  Article  PubMed  Google Scholar 

  17. Richards, C. S. et al. Screening for 185delAG in the Ashkenazim. Am. J. Hum. Genet. 60, 1085–1098 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Struewing, J. P. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med. 336, 1401–1408 (1997).

    CAS  Article  PubMed  Google Scholar 

  19. Gronwald, J. et al. Direct-to-patient BRCA1 testing: the Twoj Styl experience. Breast Cancer Res. Treat. 100, 239–245 (2006).

    Article  PubMed  Google Scholar 

  20. STYL.PL. Twoj Styl [online], (2015).

  21. Górski, B. et al. Breast cancer predisposing alleles in Poland. Breast Cancer Res. Treat. 92, 19–24 (2005).

    Article  PubMed  Google Scholar 

  22. Cybulski, C. et al. Mutations predisposing to breast cancer in 12 candidate genes in breast cancer patients from Poland. Clin. Genet. http://dx.doi.org/10.1111/cge.12524 (2014).

  23. Metcalfe, K. A. et al. Screening for founder mutations in BRCA1 and BRCA2 in unselected Jewish women. J. Clin. Oncol. 28, 387–391 (2010).

    CAS  Article  PubMed  Google Scholar 

  24. Ontario Cancer Genetic Testing Program, Pathology and Laboratory Medicine, London Health Sciences Centre (LHSC), Molecular Genetics Laboratory. Requisition for Genetic Screening for Familial Breast and Ovarian Cancer [online], (2008).

  25. National Cancer Institute. Genetics of Breast and Gynecologic Cancers—for health professionals (PDQ): Clinical criteria and models for prediction of the likelihood of a BRCA1 or BRCA2 mutation [online], (2015).

  26. Metcalfe, K. A. et al. Patient satisfaction and cancer-related distress among unselected Jewish women undergoing genetic testing for BRCA1 and BRCA2. Clin. Genet. 78, 411–417 (2010).

    CAS  Article  PubMed  Google Scholar 

  27. Metcalfe, K. A. et al. Long-term follow-up of Jewish women with a BRCA1 and BRCA2 mutation who underwent population genetic screening. Breast Cancer Res. Treat. 133, 735–740 (2012).

    CAS  Article  PubMed  Google Scholar 

  28. Metcalfe, K. A. et al. A comparison of the detection of BRCA mutation carriers through the provision of Jewish population-based genetic testing compared with clinic-based genetic testing. Br. J. Cancer 109, 777–779 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Gabai-Kapara, E. et al. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc. Natl Acad. Sci. USA 111, 14205–14210 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. King, M. C., Marks, J. H. & Mandell, J. B. New York Breast Cancer Study, G. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646 (2003).

    CAS  Article  PubMed  Google Scholar 

  31. Milne, R. L. & Antoniou, A. C. Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Ann. Oncol. 22 (Suppl. 1), i11–i17 (2011).

    Article  PubMed  Google Scholar 

  32. Metcalfe, K. et al. Family history of cancer and cancer risks in women with BRCA1 or BRCA2 mutations. J. Natl Cancer Inst. 102, 1874–1878 (2010).

    CAS  Article  PubMed  Google Scholar 

  33. Antoniou, A. C., Pharoah, P. P., Smith, P. & Easton, D. F. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br. J. Cancer 91, 1580–1590 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Manchanda, R. et al. Cost-effectiveness of population screening for BRCA mutations in Ashkenazi Jewish women compared with family history-based testing. J. Natl Cancer Inst. 107, 380 (2015).

    PubMed  Google Scholar 

  35. Manchanda, R. et al. Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial. J. Natl Cancer Inst. 107, 379 (2015).

    PubMed  Google Scholar 

  36. Plon, S. E. BRCA1/2 population screening: embracing the benefits. Curr. Oncol. 22, e230–e231 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Rubinstein, W. S., Jiang, H., Dellefave, L. & Rademaker, A. W. Cost-effectiveness of population-based BRCA1/2 testing and ovarian cancer prevention for Ashkenazi Jews: a call for dialogue. Genet. Med. 11, 629–639 (2009).

    Article  PubMed  Google Scholar 

  38. Phillips, C. & Anderson, P. What is a QALY? What is..? series [online], (2009).

    Google Scholar 

  39. Plevritis, S. K. et al. Cost-effectiveness of screening BRCA1/2 mutation carriers with breast magnetic resonance imaging. JAMA 295, 2374–2384 (2006).

    CAS  Article  PubMed  Google Scholar 

  40. Tafe, L. J., Datto, M. B., Palomaki, G. E. & Lacbawan, F. L. Molecular testing for the BRCA1 and BRCA2 Ashkenazi Jewish founder mutations: a report on the College of American Pathologists proficiency testing surveys. Genet. Med. 17, 58–62 (2015).

    CAS  Article  PubMed  Google Scholar 

  41. Palomaki, G. E. Is it time for BRCA1/2 mutation screening in the general adult population?: impact of population characteristics. Genet. Med. 17, 24–26 (2015).

    CAS  Article  PubMed  Google Scholar 

  42. Kauff, N. D. et al. Incidence of non-founder BRCA1 and BRCA2 mutations in high risk Ashkenazi breast and ovarian cancer families. J. Med. Genet. 39, 611–614 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Roa, B. B., Boyd, A. A., Volcik, K. & Richards, C. S. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat. Genet. 14, 185–187 (1996).

    CAS  Article  PubMed  Google Scholar 

  44. Oddoux, C. et al. The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat. Genet. 14, 188–190 (1996).

    CAS  Article  PubMed  Google Scholar 

  45. Whittemore, A. S. et al. Prevalence of BRCA1 mutation carriers among U. S. non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 13, 2078–2083 (2004).

    CAS  PubMed  Google Scholar 

  46. Ford, D., Easton, D. F. & Peto, J. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am. J. Hum. Genet. 57, 1457–1462 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Holland, M. L., Huston, A. & Noyes, K. Cost-effectiveness of testing for breast cancer susceptibility genes. Value Health 12, 207–216 (2009).

    Article  PubMed  Google Scholar 

  48. Levine, B. & Steinberg, K. Proposed shift in screening for breast cancer. JAMA 313, 525 (2015).

    Article  PubMed  Google Scholar 

  49. United States Census Bureau. Age and Sex Composition in the United States: 2012 [online], (2013).

  50. O'Donoghue, C., Eklund, M., Ozanne, E. M. & Esserman, L. J. Aggregate cost of mammography screening in the United States: comparison of current practice and advocated guidelines. Ann. Intern. Med. 160, 145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Long, E. F. & Ganz, P. A. Cost-effectiveness of universal BRCA1/2 screening: evidence-based decision making. JAMA Oncol. http://dx.doi.org/10.1001/jamaoncol.2015.2340 (2015).

  52. Burke, W., Coughlin, S. S., Lee, N. C., Weed, D. L. & Khoury, M. J. Application of population screening principles to genetic screening for adult-onset conditions. Genet. Test. 5, 201–211 (2001).

    CAS  Article  PubMed  Google Scholar 

  53. Wilson, J. M. & Jungner, Y. G. Principles and practice of mass screening for disease [Spanish]. Bol. Oficina Sanit. Panam. 65, 281–393 (1968).

    CAS  PubMed  Google Scholar 

  54. Khoury, M. J. et al. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet. Med. 9, 665–674 (2007).

    Article  PubMed  Google Scholar 

  55. Moyer, V. A. ; U. S. Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U. S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 160, 271–281 (2014).

    PubMed  Google Scholar 

  56. King, M. C., Levy-Lahad, E. & Lahad, A. Population-based screening for BRCA1 and BRCA2, 2014 Lasker Award. JAMA 312, 1091–1092 (2014).

    CAS  Article  PubMed  Google Scholar 

  57. Roth, A. J. Experts Offer Insight on BRCA1/2 Testing and Prophylactic Procedures. OncLive, Oncology Specialty Group. OncLive [online], (2015).

    Google Scholar 

  58. Pennington, C. Genetic Screening and Breast Cancer Risk. UConn Today [online], (2014).

    Google Scholar 

  59. McCarthy, A. M. & Armstrong, K. The role of testing for BRCA1 and BRCA2 mutations in cancer prevention. JAMA Intern. Med. 174, 1023–1024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jackson, V. NSGC Responds to Journal of the American Medical Association Study Recommending Genetic Testing for Breast and Ovarian Cancer for All Women Over 30. National Society of Genetic Counselors [online], (2014).

    Google Scholar 

  61. Yurgelun, M. B., Hiller, E. & Garber, J. E. Population-wide screening for germline BRCA1 and BRCA2 mutations: too much of a good thing? J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2015.60.8596 (2015).

  62. Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Easton, D. et al. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372, 2243–2257 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Nielsen, M., Aretz, S. & Sampson, J. R. Molecular genetics of MUTYH-associated polyposis. eLS http://dx.doi.org/10.1002/9780470015902.a0024293 (2013).

  65. Green, R. C. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 15, 565–574 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Villani, A. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li–Fraumeni syndrome: a prospective observational study. Lancet Oncol. 12, 559–567 (2011).

    CAS  Article  PubMed  Google Scholar 

  67. Kurian, A. W., Kingham, K. E. & Ford, J. M. Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Curr. Opin. Obstet. Gynecol. 27, 23–33 (2015).

    Article  PubMed  Google Scholar 

  68. Kurian, A. W. & Ford, J. M. Multigene panel testing in oncology practice: how should we respond? JAMA Oncol. 1, 277–278 (2015).

    Article  PubMed  Google Scholar 

  69. Marks, D. et al. Cost effectiveness analysis of different approaches of screening for familial hypercholesterolaemia. BMJ 324, 1303 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  70. van El, C. G. et al. Whole-genome sequencing in health care. Recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 21 (Suppl. 1), S1–S5 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Howard, H. C. et al. Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes. Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2014.289 (2015).

  72. Knoppers, B. M., Sénécal, K., Borry, P. & Avard, D. Whole genome sequencing in newborn screening programs. Sci. Transl. Med. 6, 229cm2 (2014).

    Article  PubMed  Google Scholar 

  73. National Institutes of Health. National Human Genome Research Institute. Newborn Sequencing in Genomic Medicine and Public Health (NSIGHT) [online], (2014).

  74. Collins, F. The Language of Life: DNA and the Revolution in Personalized Medicine (Harper Collins, 2010).

    Google Scholar 

  75. Welch, H. G. & Burke, W. Op-Ed: Why whole-genome testing hurts more than it helps. Los Angeles Times [online], (2015).

    Google Scholar 

  76. Vasen, H. F. et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62, 812–823 (2013).

    CAS  Article  PubMed  Google Scholar 

  77. Evans, D. G. et al. MRI breast screening in high-risk women: cancer detection and survival analysis. Breast Cancer Res. Treat. 145, 663–672 (2014).

    Article  PubMed  Google Scholar 

  78. Rosenthal, A. N. Ovarian cancer screening in the high-risk population—the UK Familial Ovarian Cancer Screening Study (UKFOCSS). Int. J. Gynecol. Cancer 22 (Suppl. 1), S27–S28 (2012).

    Article  PubMed  Google Scholar 

  79. Plon, S. E. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Easton, D. F. et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am. J. Hum. Genet 81, 873–883 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Zawati, M. H. in Routledge Handbook of Medical Law and Ethics (eds Joly, Y. & Knoppers, B. M.) 199–219 (Routledge, 2014).

    Google Scholar 

  82. Thorogood, A., Knoppers, B. M., Dondorp, W. J. & de Wert, G. M. Whole-genome sequencing and the physician. Clin. Genet. 81, 511–513 (2012).

    CAS  Article  PubMed  Google Scholar 

  83. Office of the Privacy Commissioner of Canada. Statement on the use of genetic test results by life and health insurance companies [online], (2014).

  84. Lacroix, M., Nycum, G., Godard, B. & Knoppers, B. Should physicians warn patients' relatives of genetic risks? CMAJ 178, 593–595 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Burton, H. et al. Public health implications from COGS and potential for risk stratification and screening. Nat. Genet. 45, 349–351 (2013).

    CAS  Article  PubMed  Google Scholar 

  86. National Institutes of Health. Precision Medicine Initiative [online], (2015).

  87. Department of Health. Genomics England [online], (2015).

  88. National Comprehensive Cancer Network. Genetic/Familial High-Risk Assessment: Breast and Ovarian. Hereditary Breast and/or Ovarian Cancer syndrome (HBOC-1) [online], (2015).

  89. National Institute for Health Care and Excellence. Familial breast cancer classification and care of people at risk of familial breast cancer and management of breast cancer and related risks in people with a family history of breast cancer [online], (2013).

  90. Holter, S. et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2014.59.7401 (2015).

  91. German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC)/Arbeitsgemeinschaft Gynäkologische Onkologie (AGO). Diagnosis and Treatment of Patients with Primary and Metastatic Breast Cancer [online], (2014).

  92. Cancer Institute NSW. EviQ Cancer Treatments Online [online], (2015).

  93. Richtlijnen Database. Indications for urgent DNA testing (breast cancer) [online], (2015).

  94. Armstrong, J. et al. Utilization and outcomes of BRCA genetic testing and counseling in a national commercially insured population: the ABOUT study. JAMA Oncol. http://dx.doi.org/10.1001/jamaoncol.2015.3048 (2015).

  95. Narod, S. Genetic testing for BRCA mutations today and tomorrow—about the ABOUT Study. JAMA Oncol. http://dx.doi.org/10.1001/jamaoncol.2015.3269 (2015).

Download references

Acknowledgements

We thank Peter Devilee, Christi van Asperen (Leiden University Medical Centre, Netherlands), Alfons Meindl (Technical University of Munich, Germany), Melissa Southey, Paul James and Ingrid Winship (University of Melbourne, Australia) for their assistance with composing Table 1, and Lawrence Brody (Director, Division of Genomics and Society, NIH National Human Genome Research Institute, USA) for discussions regarding the potential costs of BRCA1/2 testing women in the general population of the USA. Work in the laboratory of W.D.F. that is relevant to this manuscript has been funded by Susan G. Komen, the Cancer Research Society, and the Quebec Breast Cancer Foundation. The work of B.M.K. is funded by the Canada Research Chair in Law and Medicine and PERSPECTIVE, which is supported by: the Québec Breast Cancer Foundation, the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, and the Ministère de l'Économie, de l'Innovation et des Exportations du Québec through Genome Québec. The work of C.T. is funded in part by the Movember Foundation UK.

Author information

Authors and Affiliations

Authors

Contributions

W.D.F. devised the outline of the review. W.D.F., B.M.K., and C.T. contributed equally to researching data for the article, discussion of content, writing the manuscript, and review/editing before submission.

Corresponding author

Correspondence to William D. Foulkes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foulkes, W., Knoppers, B. & Turnbull, C. Population genetic testing for cancer susceptibility: founder mutations to genomes. Nat Rev Clin Oncol 13, 41–54 (2016). https://doi.org/10.1038/nrclinonc.2015.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.173

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing