Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Drug repurposing in oncology—patient and health systems opportunities

Abstract

In most countries, healthcare service budgets are not likely to support the current explosion in the cost of new oncology drugs. Repurposing the large arsenal of approved, non-anticancer drugs is an attractive strategy to offer more-effective options to patients with cancer, and has the substantial advantages of cheaper, faster and safer preclinical and clinical validation protocols. The potential benefits are so relevant that funding of academically and/or independently driven preclinical and clinical research programmes should be considered at both national and international levels. To date, successes in oncology drug repurposing have been limited, despite strong evidence supporting the use of many different drugs. A lack of financial incentives for drug developers and limited drug development experience within the non-profit sector are key reasons for this lack of success. We discuss these issues and offer solutions to finally seize this opportunity in the interest of patients and societies, globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combinatorial therapies and drug repurposing.

Similar content being viewed by others

References

  1. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, K. A., Blansett, L., Mawrie, R. & Di Biase, S. Innovation in cancer care and implications for health systems—Global oncology trend report. IMS institute for healthcare informatics [online], (2014).

  3. Moses, H. et al. The anatomy of medical research: US and international comparisons. JAMA 313, 174–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Drug development costs jump to $2.6 billion. Cancer Discov. 5, OF2 (2015).

  5. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery—past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. OECD Information Technology Outlook 2008. http://dx.doi.org/10.1787/it_outlook-2008-en (OECD Publishing, 2008).

  7. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dienstmann, R., Jang, I. S., Bot, B., Friend, S. & Guinney, J. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. Cancer Discov. 5, 118–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yap, T. A., Gerlinger, M., Futreal, P. A., Pusztai, L. & Swanton, C. Intratumor heterogeneity: seeing the wood for the trees. Sci. Transl. Med. 4, 127ps10 (2012).

    Article  PubMed  CAS  Google Scholar 

  10. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolchok, J. D. & Chan, T. A. Cancer: Antitumour immunity gets a boost. Nature 515, 496–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Barratt, M. G. & Frail, D. E. (eds) Drug repositioning: bringing new life to shelved assets and existing drugs. (John Wiley & Sons, 2012).

    Book  Google Scholar 

  15. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pantziarka, P. et al. The Repurposing Drugs in Oncology (ReDO) Project. Ecancermedicalscience 8, 442 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boguski, M. S., Mandl, K. D. & Sukhatme, V. P. Drug discovery. Repurposing with a difference. Science 324, 1394–1395 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Cavalla, D. Predictive methods in drug repurposing: gold mine or just a bigger haystack? Drug Discov. Today 18, 523–532 (2013).

    Article  PubMed  Google Scholar 

  19. Sukhai, M. A. et al. New sources of drugs for hematologic malignancies. Blood 117, 6747–6755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin, G. & Wong, S. T. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 19, 637–644 (2014).

    Article  PubMed  Google Scholar 

  21. Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barrett, M. J. & Frail, D. E. in Drug repositioning: bringing new life to shelved assets and existing drugs Ch. 6 (eds Andronis, C. et al.) 137–157 (John Wiley & Sons, 2012).

    Book  Google Scholar 

  23. Lamb, J. The Connectivity Map: a new tool for biomedical research. Nat. Rev. Cancer 7, 54–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Jahchan, N. S. et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 3, 1364–1377 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Zerbini, L. F. et al. Computational repositioning and preclinical validation of pentamidine for renal cell cancer. Mol. Cancer Ther. 13, 1929–1941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Amelio, I. et al. DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell Death Dis. 5, e1051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talele, T. T., Khedkar, S. A. & Rigby, A. C. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr. Top. Med. Chem. 10, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Z. et al. In silico drug repositioning-what we need to know. Drug Discov. Today 18, 110–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Villoutreix, B. O., Lagorce, D., Labbé, C. M., Sperandio, O. & Miteva, M. A. One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov. Today 18, 1081–1089 (2013).

    Article  PubMed  Google Scholar 

  31. Röhrig, U. F. et al. Rational design of indoleamine 2, 3-dioxygenase inhibitors. J. Med. Chem. 53, 1172–1189 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Cheng, F. et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8, e1002503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown, D. Unfinished business: target-based drug discovery. Drug Discov. Today 12, 1007–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, L. et al. Quantitative high-throughput drug screening identifies novel classes of drugs with anticancer activity in thyroid cancer cells: Opportunities for repurposing. J. Clin. Endocrinol. Metab. 97, 319–328 (2012).

    Article  CAS  Google Scholar 

  35. Rickles, R. J. et al. Adenosine A2A and β-2 adrenergic receptor agonists: novel selective and synergistic multiple myeloma targets discovered through systematic combination screening. Mol. Cancer Ther. 11, 1432–1442 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Borisy, A. A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl Acad. Sci. USA 100, 7977–7982 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roix, J. J. et al. Systematic repurposing screening in xenograft models identifies approved drugs with novel anti-cancer activity. PLoS ONE 9, e101708 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Withrow, S. J., Vail, D. M. & Page, R. Withrow and MacEwen's Small Animal Clinical Oncology. (Elsevier Health Sciences, 2013).

    Google Scholar 

  39. Hermo, G. A. et al. Perioperative desmopressin prolongs survival in surgically treated bitches with mammary gland tumours: a pilot study. Vet. J. 178, 103–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Elmslie, R. E., Glawe, P. & Dow, S. W. Metronomic therapy with cyclophosphamide and piroxicam effectively delays tumor recurrence in dogs with incompletely resected soft tissue sarcomas. J. Vet. Intern. Med. 22, 1373–1379 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ghofrani, H. A., Osterloh, I. H. & Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov. 5, 689–702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rehman, W., Arfons, L. M. & Lazarus, H. M. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther. Adv. Hematol. 2, 291–308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carella, A. M., Beltrami, G., Pica, G., Carella, A. & Catania, G. Clarithromycin potentiates tyrosine kinase inhibitor treatment in patients with resistant chronic myeloid leukemia. Leuk. Lymphoma 53, 1409–1411 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Léauté-Labrèze, C. et al. Propranolol for severe hemangiomas of infancy. N. Engl. J. Med. 358, 2649–2651 (2008).

    Article  PubMed  Google Scholar 

  45. Blatt, J. & Corey, S. J. Drug repurposing in pediatrics and pediatric hematology oncology. Drug Discov. Today 18, 4–10 (2013).

    Article  PubMed  Google Scholar 

  46. Flynn, P. J. et al. Retinoic acid treatment of acute promyelocytic leukemia: in vitro and in vivo observations. Blood 62, 1211–1217 (1983).

    CAS  PubMed  Google Scholar 

  47. Nygren, P. & Larsson, R. Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol. 53, 427–428 (2013).

    Article  PubMed  Google Scholar 

  48. Banavali, S., Pasquier, E. & André, N. Targeted therapy with propranolol and metronomic chemotherapy combination: sustained complete response of a relapsing metastatic angiosarcoma. Ecancermedicalscience 9, 9–12 (2015).

    Article  Google Scholar 

  49. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Demonaco, H. J., Ali, A. & Hippel, E V. The major role of clinicians in the discovery of off-label drug therapies. Pharmacotherapy 26, 323–332 (2006).

    Article  PubMed  Google Scholar 

  52. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kyle, R. A. & Rajkumar, S. V. Multiple myeloma. N. Engl. J. Med. 351, 1860–1873 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Singhal, S. et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Dimopoulos, M. A., Anagnostopoulos, A. & Weber, D. Treatment of plasma cell dyscrasias with thalidomide and its derivatives. J. Clin. Oncol. 21, 4444–4454 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Dimopoulos, M. A. et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann. Oncol. 12, 991–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Anagnostopoulos, A., Weber, D., Rankin, K., Delasalle, K. & Alexanian, R. Thalidomide and dexamethasone for resistant multiple myeloma. Br. J. Haematol. 121, 768–771 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. García-Sanz, R. et al. The combination of thalidomide, cyclophosphamide and dexamethasone (ThaCyDex) is feasible and can be an option for relapsed/refractory multiple myeloma. Hematol. J. 3, 43–48 (2002).

    Article  PubMed  Google Scholar 

  61. Mitsiades, N. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: Therapeutic implications. Blood 99, 4525–4530 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Richardson, P. G. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Zeldis, J. B., Knight, R., Hussein, M., Chopra, R. & Muller, G. A review of the history, properties, and use of the immunomodulatory compound lenalidomide. Ann. N. Y. Acad. Sci. 1222, 76–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Lopez-Girona, A. et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26, 2326–2335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chamberlain, P. P. et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Cuzick, J. et al. Estimates of benefits and harms of prophylactic use of aspirin in the general population. Ann. Oncol. 26, 47–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Rothwell, P. M. et al. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet 377, 31–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Jacobs, E. J., Newton, C. C., Gapstur, S. M. & Thun, M. J. Daily aspirin use and cancer mortality in a large US Cohort. J. Natl Cancer Inst. 104, 1208–1217 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Liao, X. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Domingo, E. et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J. Clin. Oncol. 31, 4297–4305 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Nishihara, R. et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA 309, 2563–2571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 302, 649–658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fink, S. P. et al. Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci. Transl. Med. 6, 233re2 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nan, H. et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 313, 1133–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yin, M., Zhou, J., Gorak, E. J. & Quddus, F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: a systematic review and meta-analysis. Oncologist 18, 1248–1255 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gandini, S. et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev. Res. (Phila.) 7, 867–885 (2014).

    Article  CAS  Google Scholar 

  77. Gronich, N. & Rennert, G. Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nat. Rev. Clin. Oncol. 10, 625–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Blandino, G. et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat. Commun. 3, 865 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Janzer, A. et al. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl Acad. Sci. USA 111, 10574–10579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Orecchioni, S. et al. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int. J. Cancer 544, 534–544 (2014).

    Google Scholar 

  81. Kordes, S. et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 16, 1–9 (2015).

    Article  CAS  Google Scholar 

  82. Yin, M., Zhou, J., Gorak, E. J. & Quddus, F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: a systematic review and meta-analysis. Oncologist 18, 1248–1255 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sakoda, L. C. et al. Metformin use and lung cancer risk in patients with diabetes. Cancer Prev. Res. (Phila.) 8, 174–179 (2015).

    Article  CAS  Google Scholar 

  84. Orecchioni, S. et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 73, 5880–5891 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pernicova, I. & Korbonits, M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Hirsch, H. A., Iliopoulos, D. & Struhl, K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc. Natl Acad. Sci. USA 110, 972–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Eikawa, S. et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl Acad. Sci. USA 112, 1809–1814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hart, C. et al. Anakoinosis: communicative reprogramming of tumor systems—for rescuing from chemorefractory neoplasia. Cancer Microenviron. 8, 75–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Prost, S. et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature http://dx.doi.org/10.1038/nature15248 (2015).

  91. Dagher, R. et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin. Cancer Res. 8, 3034–3038 (2002).

    CAS  PubMed  Google Scholar 

  92. Schenk, T., Stengel, S. & Zelent, A. Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer 111, 2039–2045 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sandler, R. S. et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348, 883–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Ishikawa, H. et al. The preventive effects of low-dose enteric-coated aspirin tablets on the development of colorectal tumours in Asian patients: a randomised trial. Gut 63, 1755–1759 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Cole, B. F. et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J. Natl Cancer Inst. 101, 256–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. DiPersio, J. F. et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 27, 4767–4773 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. DiPersio, J. F. et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113, 5720–5726 (2009).

    CAS  PubMed  Google Scholar 

  98. DiPersio, J. F., Uy, G. L., Yasothan, U. & Kirkpatrick, P. Plerixafor. Nat. Rev. Drug Discov. 8, 105–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. De Clercq, E. The bicyclam AMD3100 story. Nat. Rev. Drug Discov. 2, 581–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Arrowsmith, J. & Harrison, R. in Drug repositioning bringing new life to shelved assets and existing drugs ch. 1 (eds Barratt M. J. & Frail, D. E.) 7–32 (2012).

    Book  Google Scholar 

  101. Lou, Y. et al. The effectiveness of propranolol in treating infantile haemangiomas: a meta-analysis including 35 studies. Br. J. Clin. Pharmacol. 78, 44–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Shakhar, G. & Ben-Eliyahu, S. In vivo β-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J. Immunol. 160, 3251–3258 (1998).

    CAS  PubMed  Google Scholar 

  103. Horowitz, M., Neeman, E., Sharon, E. & Ben-eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. De Giorgi, V. et al. Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch. Intern. Med. 171, 779–781 (2011).

    PubMed  Google Scholar 

  105. Powe, D. G. et al. β-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1, 628–638 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pasquier, E. et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2, 797–809 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Glasner, A. et al. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J. Immunol. 184, 2449–2457 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Sloan, E. K. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042–7052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lamkin, D. M. et al. Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain. Behav. Immun. 26, 635–641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. De la Torre, A. N. et al. Effect of coadministration of propranolol and etodolac (VT-122) plus sorafenib for patients with advanced hepatocellular carcinoma (HCC) [abstract 390]. J. Clin. Oncol. 33, S3 (2015).

    Article  Google Scholar 

  111. Bhattacharyya, G. S. et al. Effect of coadministered beta blocker and COX-2 inhibitor to patients with pancreatic cancer prior to receiving albumin-bound (Nab) paclitaxel [abstract 302]. J. Clin. Oncol. 33, S3 (2015).

    Article  Google Scholar 

  112. Mercurio, S. et al. Evidence for new targets and synergistic effect of metronomic celecoxib/fluvastatin combination in pilocytic astrocytoma. Acta Neuropathol. Commun. 1, 17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pasquier, E. et al. β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br. J. Cancer 108, 2485–2494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Luciani, F. et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J. Natl Cancer Inst. 96, 1702–1713 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. López-Aguilar, E. et al. Security and maximal tolerated doses of fluvastatin in pediatric cancer patients. Arch. Med. Res. 30, 128–131 (1999).

    Article  PubMed  Google Scholar 

  116. Dirix, L. Discovery and exploitation of novel targets by approved drugs. J. Clin. Oncol. 32, 720–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Murteira, S., Millier, A., Ghezaiel, Z. & Lamure, M. Drug reformulations and repositioning in the pharmaceutical industry and their impact on market access: regulatory implications. J. Mark. Access Health Policy 2, 22813 (2014).

    Article  Google Scholar 

  118. Gatta, G. et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur. J. Cancer 47, 2493–2511 (2011).

    Article  PubMed  Google Scholar 

  119. Cavalla, D. Off-label Prescribing: Justifying Unapproved Medicine 1st edn 143–174 (John Wiley & Sons Ltd, 2015).

    Google Scholar 

  120. Mailankody, S. & Prasad, V. Comparative effectiveness questions in oncology. N. Engl. J. Med. 370, 1478–1481 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Sukhatme, V. P., Fang, K., Lo, A. & Sukhatme, V. Financial orphan therapies looking for adoption. Health Affairs Blog [online], (2014).

  122. Collins, F. S. Mining for therapeutic gold. Nat. Rev. Drug Discov. 10, 397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ghosh, J. et al. Estrogen, progesterone and HER2 receptor expression in breast tumors of patients, and their usage of HER2-targeted therapy, in a tertiary care centre in India. Indian J. Cancer 48, 391–396.

  124. André, N., Banavali, S., Snihur, Y. & Pasquier, E. Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol. 14, e239–e248 (2013).

    Article  PubMed  Google Scholar 

  125. Hale, V. G., Woo, K. & Lipton, H. L. From the field — Oxymoron no more: The potential of nonprofit drug companies to deliver on the promise of medicines for the developing world. Health Aff. (Millwood) 24, 1057–1063 (2005).

    Article  Google Scholar 

  126. Klein, B. E. & Dalby, K. J. Nonprofit drug companies. Health Aff. (Millwood) 24, 1684–1685 (2005).

    Article  Google Scholar 

  127. Weir, S. J., DeGennaro, L. J. & Austin, C. P. Repurposing approved and abandoned drugs for the treatment and prevention of cancer through public-private partnership. Cancer Res. 72, 1055–1058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Langley, R. E. et al. Add-Aspirin trial: A phase III, double blind, placebo-controlled, randomized trial assessing the effects of aspirin on disease recurrence and survival after primary therapy in common nonmetastatic solid tumors [abstract TPS1617]. J. Clin. Oncol. 32, S5 (2014).

    Article  Google Scholar 

  129. Goodwin, P. J., Ligibel, J. A. & Stambolic, V. Metformin in breast cancer: time for action. J. Clin. Oncol. 27, 3271–3273 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Parmar, M. K. B., Carpenter, J. & Sydes, M. R. More multiarm randomised trials of superiority are needed. Lancet 384, 283–284 (2014).

    Article  PubMed  Google Scholar 

  131. Sydes, M. R. et al. Flexible trial design in practice - stopping arms for lack-of-benefit and adding research arms mid-trial in STAMPEDE: a multi-arm multi-stage randomized controlled trial. Trials 13, 168 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Leiter, A. et al. Use of crowdsourcing for cancer clinical trial development. J. Natl Cancer Inst. 106, dju258 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. Rudin, C. M. et al. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J. Thorac. Oncol. 8, 619–623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mikasa, K. et al. Significant survival benefit to patients with advanced non-small-cell lung cancer from treatment with clarithromycin. Chemotherapy 43, 288–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Saad, A. S., Shaheen, S. M., Elhamamsy, M. H. & Badary, O. A. An open-label randomized controlled phase II study of clarithromycin (CL) plus CVP in patients (pts) with previously untreated stage III/IV indolent non Hodgkin lymphoma (NHL) [abstract e19510]. J. Clin. Oncol. 32 (2014).

  136. Pantziarka, P., Bouche, G., Meheus, L., Sukhatme, V. & Sukhatme, V. P. Repurposing Drugs in Oncology (ReDO)-clarithromycin as an anti-cancer agent. Ecancermedicalscience 9, 513 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. Deva, S. & Jameson, M. Histamine type 2 receptor antagonists as adjuvant treatment for resected colorectal cancer. Cochrane Database of Systematic Reviews, Issue 8. Art. No.: CD007814 http://dx.doi.org/10.1002/14651858.CD007814.pub2 (2012).

  138. Pantziarka, P., Bouche, G., Meheus, L., Sukhatme, V. & Sukhatme, V. P. Repurposing drugs in oncology (ReDO)-cimetidine as an anti-cancer agent. Ecancermedicalscience 8, 485 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yasuda, H. et al. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J. Clin. Oncol. 24, 688–694 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Reinmuth, N. et al. Randomized, double-blind phase II study to compare nitroglycerin plus oral vinorelbine plus cisplatin with oral vinorelbine plus cisplatin alone in patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Lung Cancer 83, 363–368 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Dingemans, A.-M. C. A randomized phase II study comparing paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches in patients with stage IV nonsquamous nonsmall-cell lung cancer: NVALT12 (NCT01171170). Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdv370 (2015).

  142. Davidson, A. et al. A phase III randomized trial of adding topical nitroglycerin to first-line chemotherapy for advanced nonsmall-cell lung cancer: the Australasian lung cancer trials group NITRO trial. Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdv373 (2015).

  143. Kawata, S. et al. Effect of pravastatin on survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br. J. Cancer 84, 886–891 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Belpomme, D. et al. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann. Oncol. 11, 1471–1476 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Dufour, P. et al. Sodium dithiocarb as adjuvant immunotherapy for high risk breast cancer: a randomized study. Biotherapy 6, 9–12 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Nechushtan, H. et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist 20, 366–367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sotelo, J., Briceño, E. & López-González, M. A. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 144, 337–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Briceño, E., Calderon, A. & Sotelo, J. Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg. Neurol. 67, 388–391 (2007).

    Article  PubMed  Google Scholar 

  149. Altinbas, M. et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J. Thromb. Haemost. 2, 1266–1271 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Lecumberri, R. et al. Adjuvant therapy with bemiparin in patients with limited-stage small cell lung cancer: results from the ABEL study. Thromb. Res. 132, 666–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, H. et al. Randomized clinical control study of locoregional therapy combined with arsenic trioxide for the treatment of hepatocellular carcinoma. Cancer http://dx.doi.org/10.1002/cncr.29456 (2015).

Download references

Acknowledgements

F.B. receives financial support from AIRC (Associazione Italiana per la Ricerca sul Cancro), Fondazione Umberto Veronesi, and Ministero della Salute. G.B. would like to thank Nicolas André, Lydie Meheus, Pan Pantziarka and Matthew Sydes for useful discussions of some of the ideas presented in this article.

Author information

Authors and Affiliations

Authors

Contributions

F.B. and G.B. researched data for this article, all authors made a substantial contribution to discussions of content, writing the manuscript and editing and/or reviewing the manuscript prior to submission.

Corresponding author

Correspondence to Francesco Bertolini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolini, F., Sukhatme, V. & Bouche, G. Drug repurposing in oncology—patient and health systems opportunities. Nat Rev Clin Oncol 12, 732–742 (2015). https://doi.org/10.1038/nrclinonc.2015.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.169

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer