Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems biology approaches to adverse drug effects: the example of cardio-oncology

Key Points

  • Findings from 'systems biology' approaches that merge technology from life sciences, engineering, computer science, natural sciences and mathematics have elucidated adverse drug effects from a cellular to whole-organism level

  • Systems biology approaches hold promise for chemotherapy-induced cardiotoxicity, which has received increasing attention following improvements in long-term survival of patients with cancer, resulting in the new discipline of cardio-oncology

  • Patients receiving chemotherapy have marked inter-individual variations in cardiotoxicity risk beyond pre-existing cardiovascular disease and its risk factors, indicating an influence of genetic factors

  • Genetic variants that predispose to anthracycline-induced cardiotoxicity, including genes involved in drug transport and metabolism, energy utilization, oxidative stress, apoptosis and cytoskeletal regulation are the best characterized genetic influences

  • Incorporation of genetic signatures, protein biomarkers and mathematical models for the development of new risk prediction tools and therapeutic targets could reduce the extent of chemotherapy induced cardiotoxicity

  • Defining patients' specific predispositions, in order to individualize treatment strategies and thus yield the greatest treatment benefits at the lowest possible cardiotoxicity risk, is the ultimate goal of cardio-oncology

Abstract

Increased awareness of the cardiovascular toxic effects of chemotherapy has led to the emergence of cardio-oncology (or onco-cardiology), which focuses on screening, monitoring and treatment of patients with cardiovascular dysfunctions resulting from chemotherapy. Anthracyclines, such as doxorubicin, and HER2 inhibitors, such as trastuzumab, both have cardiotoxic effects. The biological rationale, mechanisms of action and cardiotoxicity profiles of these two classes of drugs, however, are completely different, suggesting that cardiotoxic effects can occur in a range of different ways. Advances in genomics and proteomics have implicated several genomic variants and biological pathways that can influence the susceptibility to cardiotoxicity from these, and other drugs. Established pathways include multidrug resistance proteins, energy utilization pathways, oxidative stress, cytoskeletal regulation and apoptosis. Gene-expression profiles that have revealed perturbed pathways have vastly increased our knowledge of the complex processes involved in crosstalk between tumours and cardiac function. Utilization of mathematical and computational modelling can complement pharmacogenomics and improve individual patient outcomes. Such endeavours should enable identification of variations in cardiotoxicity, particularly in those patients who are at risk of not recovering, even with the institution of cardioprotective therapy. The application of systems biology holds substantial potential to advance our understanding of chemotherapy-induced cardiotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate genes implicated in doxorubicin-induced cardiotoxicity.
Figure 2: Doxorubicin-induced cardiotoxicity is mediated by TOP2B.
Figure 3: Overlapping tyrosine kinase signalling pathways in anthracycline-induced toxicity.
Figure 4: ABCB1 allele linkage disequilibrium feedforward loops.
Figure 5: The P*3 approach to systems medicine.

Similar content being viewed by others

References

  1. Hoyert, D. L. & Xu, J. Deaths: preliminary data for 2011. Natl Vital Stat. Rep. 61, 1–51 (2012).

    PubMed  Google Scholar 

  2. Yeh, E. T. & Bickford, C. L. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol. 53, 2231–2247 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Herrmann, J. et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin. Proc. 89, 1287–1306 (2014).

    Article  PubMed  Google Scholar 

  4. Ewer, M. S. & Ewer, S. M. Cardiotoxicity of anticancer treatments. Nat. Rev. Cardiol. 12, 547–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Grenier, M. A. & Lipshultz, S. E. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin. Oncol. 25, 72–85 (1998).

    CAS  PubMed  Google Scholar 

  6. Lipshultz, S. E., Alvarez, J. A. & Scully, R. E. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94, 525–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wouters, K. A., Kremer, L. C., Miller, T. L., Herman, E. H. & Lipshultz, S. E. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br. J. Haematol. 131, 561–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, C. K., Aeppli, D. & Nierengarten, M. E. The need for long-term surveillance for patients treated with curative radiotherapy for Hodgkin's disease: University of Minnesota experience. Int. J. Radiat. Oncol. Biol. Phys. 48, 169–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, J., Nachtigal, M. W., Kardami, E. & Cattini, P. A. FGF-2 protects cardiomyocytes from doxorubicin damage via protein kinase C-dependent effects on efflux transporters. Cardiovasc. Res. 98, 56–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Lotrionte, M. et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am. J. Cardiol. 112, 1980–1984 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Swain, S. M., Whaley, F. S. & Ewer, M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97, 2869–2879 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Von Hoff, D. D. et al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91, 710–717 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Swain, S. M. et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J. Clin. Oncol. 15, 1318–1332 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ewer, M. S. Chemotherapy-related cardiac safety, Research Review [online], (2011).

  15. Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. & Liu, L. F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226, 466–468 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drake, F. H. et al. Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem. 262, 16739–16747 (1987).

    CAS  PubMed  Google Scholar 

  18. McCaffrey, T. A. et al. Genomic profiling reveals the potential role of TCL1A and MDR1 deficiency in chemotherapy-induced cardiotoxicity. Int. J. Biol. Sci. 9, 350–360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Capranico, G., Tinelli, S., Austin, C. A., Fisher, M. L. & Zunino, F. Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochim. Biophys. Acta 1132, 43–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. McPherson, J. P. et al. Selective sensitization of adriamycin-resistant P388 murine leukemia cells to antineoplastic agents following transfection with human DNA topoisomerase II α. Anticancer Res. 17, 4243–4252 (1997).

    CAS  PubMed  Google Scholar 

  21. Carpenter, A. J. & Porter, A. C. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase II α mutant human cell line. Mol. Biol. Cell 15, 5700–5711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vejpongsa, P. & Yeh, E. T. Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin. Pharmacol. Ther. 95, 45–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Lyu, Y. L. et al. Topoisomerase II β mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Li, T., Danelisen, I. & Singal, P. K. Early changes in myocardial antioxidant enzymes in rats treated with adriamycin. Mol. Cell. Biochem. 232, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Wallace, K. B. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc. Toxicol. 7, 101–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. An, J., Li, P., Li, J., Dietz, R. & Donath, S. ARC is a critical cardiomyocyte survival switch in doxorubicin cardiotoxicity. J. Mol. Med. (Berl.) 87, 401–410, (2009).

    Article  CAS  Google Scholar 

  28. Solier, S. et al. Topoisomerase I and II inhibitors control caspase-2 pre-messenger RNA splicing in human cells. Mol. Cancer Res. 2, 53–61 (2004).

    CAS  PubMed  Google Scholar 

  29. Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez-Angulo, A. M., Hennessy, B. T. & Mills, G. B. Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol. 28, 2777–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vilar, J. M. & Saiz, L. Systems biophysics of gene expression. Biophys. J. 104, 2574–2585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henderson, I. C. et al. Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J. Clin. Oncol. 7, 560–571 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Allen, A. The cardiotoxicity of chemotherapeutic drugs. Semin. Oncol. 19, 529–542 (1992).

    CAS  PubMed  Google Scholar 

  34. Jungsuwadee, P. et al. The G671V variant of MRP1/ABCC1 links doxorubicin-induced acute cardiac toxicity to disposition of the glutathione conjugate of 4-hydroxy-2-trans-nonenal. Pharmacogenet. Genomics 22, 273–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thorn, C. F. et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics 21, 440–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blanco, J. G. et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 112, 2789–2795, (2008).

    Article  PubMed  Google Scholar 

  37. Wojnowski, L. et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112, 3754–3762 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Rossi, D. et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia 23, 1118–1126 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Rajic´, V. et al. Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk. Lymphoma 50, 1693–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Meissner, K. et al. Modulation of multidrug resistance P-glycoprotein 1 (ABCB1) expression in human heart by hereditary polymorphisms. Pharmacogenetics 14, 381–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Dell'Acqua, G., Polishchuck, R., Fallon, J. T. & Gordon, J. W. Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Hum. Gene Ther. 10, 1269–1279 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. George, J. et al. A single-nucleotide polymorphism in the MDR1 gene as a predictor of response to neoadjuvant chemotherapy in breast cancer. Clin. Breast Cancer 9, 161–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Armenian, S. H. et al. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br. J. Haematol. 163, 205–213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Conrad, S. et al. Identification of human multidrug resistance protein 1 (MRP1) mutations and characterization of a G671V substitution. J. Hum. Genet. 46, 656–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Wells, Q. et al. Genome-wide association identifies a novel locus for anthracycline cardiotoxicity. Circulation 128, A15509 (2013).

    Google Scholar 

  46. Zhang, Y. et al. Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 297, H37–H46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wray, J. A. et al. The epoxygenases CYP2J2 activates the nuclear receptor PPARα in vitro and in vivo. PLoS ONE 4, e7421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sebastiani, M. et al. Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J. Am. Coll. Cardiol. 50, 1362–1369 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C. & Lehman, J. J. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J. Mol. Cell Cardiol. 46, 201–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Patten, I. S. et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485, 333–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Taniyama, Y. & Walsh, K. Elevated myocardial Akt signalling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J. Mol. Cell Cardiol. 34, 1241–1247 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Ueda, K., Cardarelli, C., Gottesman, M. M. & Pastan, I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl Acad. Sci. USA 84, 3004–3008 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Katayama, K., Yoshioka, S., Tsukahara, S., Mitsuhashi, J. & Sugimoto, Y. Inhibition of the mitogen-activated protein kinase pathway results in the downregulation of P-glycoprotein. Mol. Cancer Ther. 6, 2092–2102 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Jose, M. & Thomas, S. V. Role of multidrug transporters in neurotherapeutics. Ann. Indian Acad. Neurol. 12, 89–98 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Couture, L., Nash, J. A. & Turgeon, J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol. Rev. 58, 244–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Gruber, A., Larsson, R., Nygren, P., Björkholm, M. & Peterson, C. A non-P-glycoprotein-mediated mechanism of vincristine transport which is affected by resistance modifiers and present in chemosensitive cells. Leukemia 8, 985–989 (1994).

    CAS  PubMed  Google Scholar 

  58. Estevez, M. D., Wolf, A. & Schramm, U. Effect of PSC 833, verapamil and amiodarone on adriamycin toxicity in cultured rat cardiomyocytes. Toxicol. In Vitro 14, 17–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Farokhpour, M. et al. Embryonic stem cell-derived cardiomyocytes as a model system to study cardioprotective effects of dexamethasone in doxorubicin cardiotoxicity. Toxicol. In Vitro 23, 1422–1428 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Krishnamurthy, K., Vedam, K., Kanagasabai, R., Druhan, L. J. & Ilangovan, G. Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart. Proc. Natl Acad. Sci. USA 109, 9023–9028 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Todorova, V. K. et al. Transcriptome profiling of peripheral blood cells identifies potential biomarkers for doxorubicin cardiotoxicity in a rat model. PLoS ONE 7, e48398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Steˇrba, M. et al. Proteomic insights into chronic anthracycline cardiotoxicity. J. Mol. Cell Cardiol. 50, 849–862 (2011).

    Article  CAS  Google Scholar 

  63. Cui, Y. et al. Measuring adriamycin-induced cardiac haemodynamic dysfunction with a proteomics approach. Immunopharmacol. Immunotoxicol. 32, 376–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. El-Kareh, A. W. & Secomb, T. W. A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumour cells. Neoplasia 2, 325–338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kneidl, B., Peller, M., Winter, G., Lindner, L. H. & Hossann, M. Thermosensitive liposomal drug≈delivery systems: state of the art review. Int. J. Nanomedicine 9, 4387–4398 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Dicheva, B. M. & Koning, G. A. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumours. Expert Opin. Drug Deliv. 11, 83–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Zhan, W. & Xu, X. Y. A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J. Drug Deliv. 172, 529 (2013).

    Google Scholar 

  68. El-Kareh, A. W. & Secomb, T. W. Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin. Neoplasia 7, 705–713 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reich, S. D. et al. Mathematical model for adriamycin (doxorubicin) pharmacokinetics. Cancer Chemother. Pharmacol. 3, 125–131 (1979).

    CAS  PubMed  Google Scholar 

  70. Evans, C. J. et al. A mathematical model of doxorubicin penetration through multicellular layers. J. Theor. Biol. 257, 598–608 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Chien, K. R. Herceptin and the heart--a molecular modifier of cardiac failure. N. Engl. J. Med. 354, 789–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Seidman, A. et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol. 20, 1215–1221 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Tan-Chiu, E. et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J. Clin. Oncol. 23, 7811–7819 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Suter, T. M. et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J. Clin. Oncol. 25, 3859–3865 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Moja, L. et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst. Rev. 4, CD006243 (2012).

    Google Scholar 

  80. Balduzzi, S. et al. Trastuzumab-containing regimens for metastatic breast cancer. Cochrane Database Syst. Rev. 6, CD006242 (2014).

    Google Scholar 

  81. de Azambuja, E. et al. Trastuzumab-associated cardiac events at 8 years of median follow-up in the Herceptin Adjuvant trial (BIG 1–01). J. Clin. Oncol. 32, 2159–2165 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Romond, E. H. et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 30, 3792–3799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Beauclair, S. et al. Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann. Oncol. 18, 1335–1341 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Xie, D. et al. Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J. Natl Cancer Inst. 92, 412–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Lemieux, J. et al. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res. 33, 2569–2576 (2013).

    CAS  PubMed  Google Scholar 

  86. Morris, P. G. & Hudis, C. A. Trastuzumab-related cardiotoxicity following anthracycline-based adjuvant chemotherapy: how worried should we be? J. Clin. Oncol. 28, 3407–3410 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Russell, S. D. et al. Independent adjudication of symptomatic heart failure with the use of doxorubicin and cyclophosphamide followed by trastuzumab adjuvant therapy: a combined review of cardiac data from the National Surgical Adjuvant breast and Bowel Project B-31 and the North Central Cancer Treatment Group N9831 clinical trials. J. Clin. Oncol. 28, 3416–3421 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8, 459–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Ozcelik, C. et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc. Natl Acad. Sci. USA 99, 8880–8885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garratt, A. N., Ozcelik, C. & Birchmeier, C. ErbB2 pathways in heart and neural diseases. Trends Cardiovasc. Med. 13, 80–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Pentassuglia, L. & Sawyer, D. B. The role of neuregulin-1beta/ErbB signalling in the heart. Exp. Cell Res. 315, 627–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Fuller, S. J., Sivarajah, K. & Sugden, P. H. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J. Mol. Cell Cardiol. 44, 831–854 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Parodi, E. M. & Kuhn, B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc. Res. 102, 194–204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuramochi, Y. et al. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signalling. J. Biol. Chem. 279, 51141–51147 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, X. et al. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J. Am. Coll. Cardiol. 48, 1438–1447 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Bersell, K., Arab, S., Haring, B. & Kuhn, B. Neuregulin1/ErbB4 signalling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, F. F. et al. Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 289, H660–H666 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. De Keulenaer, G. W., Doggen, K. & Lemmens, K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ. Res. 106, 35–46, (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Milano, G. et al. Doxorubicin and trastuzumab regimen induces biventricular failure in mice. J. Am. Soc. Echocardiogr. 27, 568–579 (2014).

    Article  PubMed  Google Scholar 

  100. de Korte, M. A. et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur. J. Cancer 43, 2046–2051 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Gabrielson, K. et al. Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. Cancer Res. 67, 1436–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Gianni, L., Salvatorelli, E. & Minotti, G. Anthracycline cardiotoxicity in breast cancer patients: synergism with trastuzumab and taxanes. Cardiovasc. Toxicol. 7, 67–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Sawyer, D. B., Zuppinger, C., Miller, T. A., Eppenberger, H. M. & Suter, T. M. Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105, 1551–1554 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Sato, S., Fujita, N. & Tsuruo, T. Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J. Biol. Chem. 279, 33759–33767 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Popel, A. S. & Hunter, P. J. Systems biology and physiome projects. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 153–158 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Auffray, C., Chen, Z. & Hood, L. Systems medicine: the future of medical genomics and healthcare. Genome Med. 1, 2 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clermont, G. et al. Bridging the gap between systems biology and medicine. Genome Med. 1, 88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Thongboonkerd, V. The promise and challenge of systems biology in translational medicine. Clin. Sci. (Lond.) 124, 389–390 (2013).

    Article  CAS  Google Scholar 

  109. Karnes, J. H. et al. Using systems approaches to address challenges for clinical implementation of pharmacogenomics. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 125–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Johnson, J. A. et al. Institutional profile: University of Florida and Shands Hospital personalized medicine program: clinical implementation of pharmacogenetics. Pharmacogenomics 14, 723–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Pulley, J. M. et al. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 92, 87–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Crews, K. R. et al. Development and implementation of a pharmacist-managed clinical pharmacogenetics service. Am. J. Health Syst. Pharm. 68, 143–150 (2011).

    Article  PubMed  Google Scholar 

  113. O'Donnell, P. H. et al. The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin. Pharmacol. Ther. 92, 446–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Bielinski, S. J. et al. Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin. Proc. 89, 25–33 (2014).

    Article  PubMed  Google Scholar 

  115. Mangravite, L. M. et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 502, 377–380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Veenstra, D. L., Roth, J. A., Garrison, L. P., Ramsey, S. D. & Burke, W. A. formal risk-benefit framework for genomic tests: facilitating the appropriate translation of genomics into clinical practice. Genet. Med. 12, 686–693 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Siest, G., Marteau, J. B. & Visvikis-Siest, S. Personalized therapy and pharmacogenomics: future perspective. Pharmacogenomics 10, 927–930 (2009).

    Article  PubMed  Google Scholar 

  118. Coto, E. & Tavira, B. Pharmacogenetics of calcineurin inhibitors in renal transplantation. Transplantation 88, S62–S67 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Wojtacki, J., Lewicka-Nowak, E. & Les´niewski-Kmak, K. Anthracycline-induced cardiotoxicity: clinical course, risk factors, pathogenesis, detection and prevention—review of the literature. Med. Sci. Monit. 6, 411–420 (2000).

    CAS  PubMed  Google Scholar 

  120. Welter, D. et al. The NHGRI GWAS Catalogue, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Oberhardt, M. G. E. Genome-scale modeling and human disease: an overview. Front. Physiol. 5, 527 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Owen, R. P., Klein, T. E. & Altman, R. B. The education potential of the pharmacogenetics and pharmacogenomics knowledge base (PharmGKB). Clin. Pharmacol. Ther. 82, 472–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Collins, F. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mushiroda, T. et al. A model of prediction system for adverse cardiovascular reactions by calcineurin inhibitors among patients with renal transplants using gene-based single-nucleotide polymorphisms. J. Hum. Genet. 50, 442–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Dickens, D., Owen, A., Alfirevic, A. & Pirmohamed, M. ABCB1 single nucleotide polymorphisms (1236C>T, 2677G>T, and 3435C>T) do not affect transport activity of human P-glycoprotein. Pharmacogenet. Genomics 23, 314–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Herrlinger, K. R. et al. ABCB1 single-nucleotide polymorphisms determine tacrolimus response in patients with ulcerative colitis. Clin. Pharmacol. Ther. 89, 422–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Visscher, H. et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 30, 1422–1428 (2012).

    Article  PubMed  Google Scholar 

  128. Weiss, J. et al. Inhibition of P-glycoprotein by newer antidepressants. J. Pharmacol. Exp. Ther. 305, 197–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Atkins, C. D. Single nucleotide polymorphisms and anthracycline cardiotoxicity in children: potential implications for adult oncology. J. Clin. Oncol. 30, 3563 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Johnatty, S. E. et al. ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin. Cancer Res. 14, 5594–5601 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Zheng, Q. et al. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: a systematic review and meta-analysis. Pharmacogenomics J. 15, 127–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Fleishman, S. J., Schlessinger, J. & Ben-Tal, N. A putative molecular-activation switch in the transmembrane domain of erbB2. Proc. Natl Acad. Sci. USA 99, 15937–15940 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Classen, S., Olland, S. & Berger, J. M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc. Natl Acad. Sci. USA 100, 10629–10634 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Roca, J., Ishida, R., Berger, J. M., Andoh, T. & Wang, J. C. Antitumour bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc. Natl Acad. Sci. USA 91, 1781–1785 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hensley, M. L. et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J. Clin. Oncol. 27, 127–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Brown, S.-A. Building SuperModels: emerging computational avatars and principles for precision medicine. Front. Neurosci. (in press).

  137. Koster, E. S., Rodin, A. S., Raaijmakers, J. A. & Maitland-van der Zee, A. H. Systems biology in pharmacogenomic research: the way to personalized prescribing? Pharmacogenomics 10, 971–981 (2009).

    Article  PubMed  Google Scholar 

  138. Reimers, M. S., Engels, C. C., Kuppen, P. J., van de Velde, C. J. & Liefers, G. J. How does genome sequencing impact surgery? Nat. Rev. Clin. Oncol. 11, 610–618 (2014).

    Article  PubMed  Google Scholar 

  139. Becquemont, L. Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics 10, 961–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Tortolina, L. et al. A multi-scale approach to colorectal cancer: from a biochemical- interaction signalling-network level, to multi-cellular dynamics of malignant transformation. Interplay with mutations and onco-protein inhibitor drugs. Curr. Cancer Drug Targets 12, 339–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Huang, L. C., Wu, X. & Chen, J. Y. Predicting adverse side effects of drugs. BMC Genomics 12, S11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, L., McLeod, H. L. & Weinshilboum, R. M. Genomics and drug response. N. Engl. J. Med. 364, 1144–1153, (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kohane, I. S. Using electronic health records to drive discovery in disease genomics. Nat. Rev. Genet. 12, 417–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. van Dalen, E. C., Caron, H. N., Dickinson, H. O. & Kremer, L. C. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev. 6, CD003917 (2011).

    Google Scholar 

  145. Scott, J. M. et al. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124, 642–650 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Felker, G. M. et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 342, 1077–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Onitilo, A. A., Engel, J. M. & Stankowski, R. V. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther. Adv. Drug Saf. 5, 154–166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Veenstra, D. L., Roth, J. A., Garrison, L. P. Jr, Ramsey, S. D. & Burke, W. A formal risk-benefit framework for genomic tests: facilitating the appropriate translation of genomics into clinical practice. Genet. Med. 12, 686–693 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hazin, R. et al. Ethical, legal, and social implications of incorporating genomic information into electronic health records. Genet. Med. 15, 810–816 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Collins, F. S. Exceptional opportunities in medical science: a view from the National Institutes of Health. JAMA 313, 131–132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ueda, H. et al. Neuregulin receptor ErbB2 localization at T-tubule in cardiac and skeletal muscle. J. Histochem. Cytochem. 53, 87–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Coylewright, M. et al. Impact of sociodemographic patient characteristics on the efficacy of decision AIDS: a patient-level meta-analysis of 7 randomized trials. Circ. Cardiovasc. Qual. Outcomes 7, 360–367 (2014).

    Article  PubMed  Google Scholar 

  153. Kullo, I. J., Jarvik, G. P., Manolio, T. A., Williams, M. S. & Roden, D. M. Leveraging the electronic health record to implement genomic medicine. Genet. Med. 15, 270–271 (2013).

    Article  PubMed  Google Scholar 

  154. Singh, A. B., Bousman, C. A., Ng, C. H., Byron, K. & Berk, M. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression. Transl. Psychiatry 2, e198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Iftikhar Kullo of the Mayo Clinic, Rochester, MN, for editing an earlier version of this manuscript and assistance with figure procurement. We also acknowledge the assistance of Dr Shameer Khader of the Department of Genetics and Genomic Sciences at Mount Sinai Hospital in New York (and formerly of Mayo Clinic in Rochester, MN) for initial discussions before preparation, and for reading an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.-A.B. and J.H. researched data for this article, all authors made a substantial contribution to discussions of content, S.-A.B. and J.H. wrote the manuscript, and all authors made a substantial contribution to editing and reviewing the manuscript before submission.

Corresponding author

Correspondence to Joerg Herrmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Mathematical modelling can be used to predict the occurrence of doxorubicin-induced cardiotoxicity based on dose accumulation. (DOCX 214 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, SA., Sandhu, N. & Herrmann, J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol 12, 718–731 (2015). https://doi.org/10.1038/nrclinonc.2015.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.168

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research