Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

HPV-FASTER: broadening the scope for prevention of HPV-related cancer

Abstract

Human papillomavirus (HPV)-related screening technologies and HPV vaccination offer enormous potential for cancer prevention, notably prevention of cervical cancer. The effectiveness of these approaches is, however, suboptimal owing to limited implementation of screening programmes and restricted indications for HPV vaccination. Trials of HPV vaccination in women aged up to 55 years have shown almost 90% protection from cervical precancer caused by HPV16/18 among HPV16/18-DNA-negative women. We propose extending routine vaccination programmes to women of up to 30 years of age (and to the 45–50-year age groups in some settings), paired with at least one HPV-screening test at age 30 years or older. Expanding the indications for HPV vaccination and much greater use of HPV testing in screening programmes has the potential to accelerate the decline in cervical cancer incidence. Such a combined protocol would represent an attractive approach for many health-care systems, in particular, countries in Central and Eastern Europe, Latin America, Asia, and some more-developed parts of Africa. The role of vaccination in women aged >30 years and the optimal number of HPV-screening tests required in vaccinated women remain important research issues. Cost-effectiveness models will help determine the optimal combination of HPV vaccination and screening in public health programmes, and to estimate the effects of such approaches in different populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HPV-FASTER core concept and the rationale for combined HPV screening and vaccination of women up to 45–50 years of age.
Figure 2: Framework of cervical cancer preventive strategies and of the HPV-FASTER strategy.
Figure 3: Modelling the effects of increasing the number of age cohorts vaccinated against HPV16/18 on time to reduction in the prevalence of HPV infection.

Similar content being viewed by others

References

  1. de Sanjose, S. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 11, 1048–1056 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. de Sanjosé, S. et al. Worldwide human papillomavirus genotype attribution in over 2000 cases of intraepithelial and invasive lesions of the vulva. Eur. J. Cancer 49, 3450–3461 (2013).

    Article  PubMed  Google Scholar 

  3. Alemany, L. et al. Large contribution of human papillomavirus in vaginal neoplastic lesions: a worldwide study in 597 samples. Eur. J. Cancer 50, 2846–2854 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Alemany, L. et al. Human papillomavirus DNA prevalence and type distribution in anal carcinomas worldwide. Int. J. Cancer 136, 98–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Mork, J. et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 344, 1125–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Forman, D. et al. Global burden of human papillomavirus and related diseases. Vaccine 30 (Suppl. 5), F12–F23 (2012).

    Article  PubMed  Google Scholar 

  7. National Institutes of Health, National Cancer Institute. HPV and Cancer [online], (2015).

  8. Cornall, A. M. et al. Anal and perianal squamous carcinomas and high-grade intraepithelial lesions exclusively associated with “low-risk” HPV genotypes 6 and 11. Int. J. Cancer 133, 2253–2258 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Ferlay, J. et al. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. WHO International Agency for Research on Cancer [online], (2010).

    Google Scholar 

  10. Parkin, D. M. & Bray, F. Chapter 2: The burden of HPV-related cancers. Vaccine 24 (Suppl. 3), 11–25 (2006).

    Article  Google Scholar 

  11. Ferlay, J. et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. WHO International Agency for Research on Cancer [online], (2013).

    Google Scholar 

  12. American Cancer Society. Cancer Facts and Figures 2015 [online], (2015).

  13. Vaccarella, S., Lortet-Tieulent, J., Plummer, M., Franceschi, S. & Bray, F. Worldwide trends in cervical cancer incidence: impact of screening against changes in disease risk factors. Eur. J. Cancer 49, 3262–3273 (2013).

    Article  PubMed  Google Scholar 

  14. Vaccarella, S. et al. 50 years of screening in the Nordic countries: quantifying the effects on cervical cancer incidence. Br. J. Cancer 111, 965–969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. WHO International Agency for Research on Cancer. IARC Handbooks of Cancer Prevention Volume 10: Cervix Cancer Screening 10, (IARC Press, 2005).

  16. Salo, H. et al. The burden and costs of prevention and management of genital disease caused by HPV in women: a population-based registry study in Finland. Int. J. Cancer 133, 1459–1469 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Salo, H. et al. Divergent coverage, frequency and costs of organised and opportunistic Pap testing in Finland. Int. J. Cancer 135, 204–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Habbema, D., De Kok, I. M. & Brown, M. L. Cervical cancer screening in the United States and the Netherlands: a tale of two countries. Milbank Q. 90, 5–37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arbyn, M. et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ 337, a1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuzick, J. et al. New technologies and procedures for cervical cancer screening. Vaccine 30 (Suppl. 5), F107–F116 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Arbyn, M. et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine 30 (Suppl. 5), F88–F99 (2012).

    Article  PubMed  Google Scholar 

  22. Arbyn, M. et al. Cervical cancer screening program and human papillomavirus (HPV) testing, part II: update on HPV primary screening. (Belgian Health Care Knowledge Centre [KCE], 2015).

  23. Steben, M. et al. Upgrading public health programs for human papillomavirus prevention and control is possible in low- and middle-income countries. Vaccine 30 (Suppl. 5), F183–F191 (2012).

    Article  PubMed  Google Scholar 

  24. Meijer, C. J. et al. in The Epidemiology of Cervical Cancer and Human Papillomavirus (eds Muñoz, N., Bosch, F. X., Shah, K. V. & Meheus, A.) 271–281 (International Agency for Research on Cancer, 1992).

    Google Scholar 

  25. Cuzick, J. et al. Human papillomavirus testing in primary cervical screening. Lancet 345, 1533–1536 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Ronco, G. et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 383, 524–532 (2014).

    Article  PubMed  Google Scholar 

  27. Cuzick, J. et al. Long-term follow-up of cervical abnormalities among women screened by HPV testing and cytology—results from the Hammersmith study. Int. J. Cancer 122, 2294–2300 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Naucler, P. et al. Human papillomavirus and Papanicolaou tests to screen for cervical cancer. N. Engl. J. Med. 357, 1589–1597 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Rijkaart, D. C. et al. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial. Lancet Oncol. 13, 78–88 (2012).

    Article  PubMed  Google Scholar 

  30. Kitchener, H. C. et al. HPV testing in combination with liquid-based cytology in primary cervical screening (ARTISTIC): a randomised controlled trial. Lancet Oncol. 10, 672–682 (2009).

    Article  PubMed  Google Scholar 

  31. Ronco, G. et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 11, 249–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Wright, T. C. et al. Interlaboratory variation in the performance of liquid-based cytology: insights from the ATHENA trial. Int. J. Cancer 134, 1835–1843 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Franco, E. L., Mahmud, S. M., Tota, J., Ferenczy, A. & Coutlée, F. The expected impact of HPV vaccination on the accuracy of cervical cancer screening: the need for a paradigm change. Arch. Med. Res. 40, 478–485 (2009).

    Article  PubMed  Google Scholar 

  34. Dijkstra, M. G. et al. Cervical cancer screening: on the way to a shift from cytology to full molecular screening. Ann. Oncol. 25, 927–935 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Arbyn, M. et al. Which high-risk HPV assays fulfil criteria for use in primary cervical cancer screening? Clin. Microbiol. Infect. http://dx.doi.org/10.1016/j.cmi.2015.04.015 (2015).

  36. Health Council of the Netherlands. Population screening for cervical cancer [online], (2011).

  37. Ronco, G. et al. Health technology assessment report: HPV DNA based primary screening for cervical cancer precursors [Italian]. Epidemiol. Prev. 36, e1–e72 (2012).

    PubMed  Google Scholar 

  38. Torné Bladé, A. et al. Guía de cribado del cáncer de cuello de útero en España, 2014. Prog. Obstet. Ginecol. 57 (Suppl. 1), 1–53 (2014).

    Article  Google Scholar 

  39. Huh, W. K. et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. Obstet. Gynecol. 125, 330–337 (2015).

    Article  PubMed  Google Scholar 

  40. von Karsa, L. et al. European guidelines for quality assurance in cervical cancer screening. Summary of the supplements on HPV screening and vaccination. Papillomavirus Res. http://dx.doi.org/10.1016/j.pvr.2015.06.006 (2015).

  41. US Food and Drug Administration. FDA News Release: FDA approves first human papillomavirus test for primary cervical cancer screening [online], (2014).

  42. Leinonen, M. et al. Age-specific evaluation of primary human papillomavirus screening vs conventional cytology in a randomized setting. J. Natl Cancer Inst. 101, 1612–1623 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Carozzi, F. et al. Use of p16-INK4A overexpression to increase the specificity of human papillomavirus testing: a nested substudy of the NTCC randomised controlled trial. Lancet Oncol. 9, 937–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Petry, K. U. et al. Triaging Pap cytology negative, HPV positive cervical cancer screening results with p16/Ki-67 dual-stained cytology. Gynecol. Oncol. 121, 505–509 (2011).

    Article  PubMed  Google Scholar 

  45. Uijterwaal, M. H. et al. Triaging HPV-positive women with normal cytology by p16/Ki-67 dual-stained cytology testing: baseline and longitudinal data. Int. J. Cancer 136, 2361–2368 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Schiffman, M. et al. A study of genotyping for management of human papillomavirus-positive, cytology-negative cervical screening results. J. Clin. Microbiol. 53, 52–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Verhoef, V. M. et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): a randomised controlled non-inferiority trial. Lancet Oncol. 15, 315–322 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Cuzick, J., Mayrand, M. H., Ronco, G., Snijders, P. & Wardle, J. Chapter 10: New dimensions in cervical cancer screening. Vaccine 24 (Suppl. 3), 90–97 (2006).

    Article  Google Scholar 

  49. Cuzick, J. et al. Individual detection of 14 high risk human papilloma virus genotypes by the PapType test for the prediction of high grade cervical lesions. J. Clin. Virol. 60, 44–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Denny, L. et al. Screen-and-treat approaches for cervical cancer prevention in low-resource settings: a randomized controlled trial. JAMA 294, 2173–2181 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Sankaranarayanan, R. et al. HPV screening for cervical cancer in rural India. N. Engl. J. Med. 360, 1385–1394 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kyrgiou, M. et al. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet 367, 489–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. McCaffery, K., Waller, J., Nazroo, J. & Wardle, J. Social and psychological impact of HPV testing in cervical screening: a qualitative study. Sex. Transm. Infect. 82, 169–174 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwan, T. T. et al. Psychological burden of testing positive for high-risk human papillomavirus on women with atypical cervical cytology: a prospective study. Acta Obstet. Gynecol. Scand. 90, 445–451 (2011).

    Article  PubMed  Google Scholar 

  55. Hendry, M. et al. Are women ready for the new cervical screening protocol in England? A systematic review and qualitative synthesis of views about human papillomavirus testing. Br. J. Cancer 107, 243–254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qiao, Y.-L. et al. Lower cost strategies for triage of human papillomavirus DNA-positive women. Int. J. Cancer 134, 2891–2901 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, W. et al. The concordance of HPV DNA detection by Hybrid Capture 2 and care HPV on clinician- and self-collected specimens. J. Clin. Virol. 61, 553–557 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Arbyn, M. et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol. 15, 172–183 (2014).

    Article  PubMed  Google Scholar 

  59. Pathak, N., Dodds, J., Zamora, J. & Khan, K. Accuracy of urinary human papillomavirus testing for presence of cervical HPV: systematic review and meta-analysis. BMJ 349, g5264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castle, P. E. et al. Reliability of the Xpert HPV assay to detect high-risk human papillomavirus DNA in a colposcopy referral population. Am. J. Clin. Pathol. 143, 126–133 (2015).

    Article  PubMed  Google Scholar 

  61. Schiller, J. T., Castellsagué, X. & Garland, S. M. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30 (Suppl. 5), F123–F138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lehtinen, M. & Dillner, J. Clinical trials of human papillomavirus vaccines and beyond. Nat. Rev. Clin. Oncol. 10, 400–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Stillo, M., Carrillo Santisteve, P. & Lopalco, P. L. Safety of human papillomavirus vaccines: a review. Expert Opin. Drug Saf. 14, 697–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. US Food and Drug Administration. June 8, 2006 Approval Letter: Human Papillomavirus Quadrivalent (Types 6, 11, 16, 18) Vaccine, Recombinant [online], (2006).

  65. Herrero, R. et al. Reduced prevalence of oral human papillomavirus (HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS ONE 8, e68329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garland, S. M. The Australian experience with the human papillomavirus vaccine. Clin. Ther. 36, 17–23 (2014).

    Article  PubMed  Google Scholar 

  67. Hariri, S. et al. Reduction in HPV 16/18-associated high grade cervical lesions following HPV vaccine introduction in the United States—2008–2012. Vaccine 33, 1608–1613 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baldur-Felskov, B., Dehlendorff, C., Munk, C. & Kjaer, S. K. Early impact of human papillomavirus vaccination on cervical neoplasia--nationwide follow-up of young Danish women. J. Natl Cancer Inst. 106, djt460 (2014).

    Article  PubMed  Google Scholar 

  69. Joura, E. A. et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 372, 711–723 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Drolet, M. et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 15, 565–580 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tabrizi, S. N. et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. Lancet Infect. Dis. 14, 958–966 (2014).

    Article  PubMed  Google Scholar 

  72. Guan, P. et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int. J. Cancer 131, 2349–2359 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. US Food and Drug Administration. FDA News Release: FDA approves Gardasil 9 for prevention of certain cancers caused by five additional types of HPV [online], (2014).

  74. European Medicines Agency. Gardasil 9 [online], (2015).

  75. Lehtinen, M. et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 89–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Mesher, D. et al. Reduction in HPV 16/18 prevalence in sexually active young women following the introduction of HPV immunisation in England. Vaccine 32, 26–32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Malagón, T. et al. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Medicine (Baltimore) 94, e722 (2015).

    Article  CAS  Google Scholar 

  78. David, M.-P. et al. Long-term persistence of anti-HPV-16 and -18 antibodies induced by vaccination with the AS04-adjuvanted cervical cancer vaccine: modeling of sustained antibody responses. Gynecol. Oncol. 115, S1–S6 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Aregay, M., Shkedy, Z., Molenberghs, G., David, M.-P. & Tibaldi, F. Model-based estimates of long-term persistence of induced HPV antibodies: a flexible subject-specific approach. J. Biopharm. Stat. 23, 1228–1248 (2013).

    Article  PubMed  Google Scholar 

  80. Markowitz, L. E. et al. Quadrivalent human papillomavirus vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 56, 1–24 (2007).

    PubMed  Google Scholar 

  81. Giuliano, A. R. et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N. Engl. J. Med. 364, 401–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Palefsky, J. M. et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N. Engl. J. Med. 365, 1576–1585 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Castellsagué, X. et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br. J. Cancer 105, 28–37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Skinner, S. R. et al. Efficacy, safety, and immunogenicity of the human papillomavirus 16/18 AS04-adjuvanted vaccine in women older than 25 years: 4-year interim follow-up of the phase 3, double-blind, randomised controlled VIVIANE study. Lancet 384, 2213–2227 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, J. J., Brisson, M., Edmunds, W. J. & Goldie, S. J. Modeling cervical cancer prevention in developed countries. Vaccine 26 (Suppl. 10), K76–K86 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Markowitz, L. E. et al. Human papillomavirus vaccine introduction--the first five years. Vaccine 30 (Suppl. 5), F139–F148 (2012).

    Article  PubMed  Google Scholar 

  87. Elfström, K. M., Dillner, J. & Arnheim-Dahlström, L. Organization and quality of HPV vaccination programs in Europe. Vaccine 33, 1673–1681 (2015).

    Article  PubMed  Google Scholar 

  88. Franco, E. L., Cuzick, J., Hildesheim, A. & de Sanjosé, S. Chapter 20: Issues in planning cervical cancer screening in the era of HPV vaccination. Vaccine 24 (Suppl. 3), 171–177 (2006).

    Article  Google Scholar 

  89. Tota, J. E., Ramana-Kumar, A. V., El-Khatib, Z. & Franco, E. L. The road ahead for cervical cancer prevention and control. Curr. Oncol. 21, e255–e264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kjaer, S. K., Frederiksen, K., Munk, C. & Iftner, T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. J. Natl Cancer Inst. 102, 1478–1488 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. de Sanjose, S. et al. Age-specific occurrence of HPV16- and HPV18-related cervical cancer. Cancer Epidemiol. Biomarkers Prev. 22, 1313–1318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. GAVI: The Vaccine Alliance. Human papillomavirus vaccine support [online], (2015).

  93. [No authors listed] Human papillomavirus vaccines: WHO position paper, October 2014. Wkly Epidemiol. Rec. 89, 465–491 (2014).

  94. Hildesheim, A. et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298, 743–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Gertig, D. M. et al. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Med. 11, 227 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lehtinen, M. et al. Characteristics of a cluster-randomized phase IV human papillomavirus vaccination effectiveness trial. Vaccine 33, 1284–1290 (2015).

    Article  PubMed  Google Scholar 

  97. Edgren, G. & Sparén, P. Risk of anogenital cancer after diagnosis of cervical intraepithelial neoplasia: a prospective population-based study. Lancet Oncol. 8, 311–316 (2007).

    Article  PubMed  Google Scholar 

  98. Kang, W. D., Choi, H. S. & Kim, S. M. Is vaccination with quadrivalent HPV vaccine after loop electrosurgical excision procedure effective in preventing recurrence in patients with high-grade cervical intraepithelial neoplasia (CIN2–3)? Gynecol. Oncol. 130, 264–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Australian Government. Medical Services Advisory Committee, Standing Committee on Screening. MSAC Outcomes: Application no. 1276—renewal of the National Cervical Screening Program [online], (2014).

  100. Rodríguez, A. C. et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. J. Natl Cancer Inst. 102, 315–324 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Castañón, A., Landy, R., Cuzick, J. & Sasieni, P. Cervical screening at age 50–64 years and the risk of cervical cancer at age 65 years and older: population-based case control study. PLoS Med. 11, e1001585 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gravitt, P. E. The known unknowns of HPV natural history. J. Clin. Invest. 121, 4593–4599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gravitt, P. E. Evidence and impact of human papillomavirus latency. Open Virol. J. 6, 198–203 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Trottier, H. et al. Human papillomavirus infection and reinfection in adult women: the role of sexual activity and natural immunity. Cancer Res. 70, 8569–8577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Veldhuijzen, N. J., Snijders, P. J., Reiss, P., Meijer, C. J. & van de Wijgert, J. H. Factors affecting transmission of mucosal human papillomavirus. Lancet Infect. Dis. 10, 862–874 (2010).

    Article  PubMed  Google Scholar 

  106. Safaeian, M. et al. Epidemiological study of anti-HPV16/18 seropositivity and subsequent risk of HPV16 and -18 infections. J. Natl Cancer Inst. 102, 1653–1662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Castellsagué, X. et al. Risk of newly detected infections and cervical abnormalities in women seropositive for naturally acquired human papillomavirus type 16/18 antibodies: analysis of the control arm of PATRICIA. J. Infect. Dis. 210, 517–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dempsey, A. F., Brewer, S. E., Pyrzanowski, J., Sevick, C. & O'leary, S. T. Acceptability of human papillomavirus vaccines among women older than 26 years. Vaccine 33, 1556–1561 (2015).

    Article  PubMed  Google Scholar 

  109. Marshall, H., Ryan, P., Roberton, D. & Baghurst, P. A cross-sectional survey to assess community attitudes to introduction of human papillomavirus vaccine. Aust. N. Z. J. Public Health 31, 235–242 (2007).

    Article  PubMed  Google Scholar 

  110. Cui, Y., Baldwin, S. B., Wiley, D. J. & Fielding, J. E. Human papillomavirus vaccine among adult women: disparities in awareness and acceptance. Am. J. Prev. Med. 39, 559–563 (2010).

    Article  PubMed  Google Scholar 

  111. Agorastos, T. et al. Distinct demographic factors influence the acceptance of vaccination against HPV. Arch. Gynecol. Obstet. 292, 197–205 (2015).

    Article  PubMed  Google Scholar 

  112. Anhang Price, R., Koshiol, J., Kobrin, S. & Tiro, J. A. Knowledge and intention to participate in cervical cancer screening after the human papillomavirus vaccine. Vaccine 29, 4238–4243 (2011).

    Article  PubMed  Google Scholar 

  113. Lazcano-Ponce, E., Alonso, P., Ruiz-Moreno, J. A. & Hernández-Avila, M. Recommendations for cervical cancer screening programs in developing countries. The need for equity and technological development. Salud Pública México 45 (Suppl. 3), S449–S462 (2003).

    Article  Google Scholar 

  114. Almonte, M. et al. New paradigms and challenges in cervical cancer prevention and control in Latin America [Spanish]. Salud Pública México 52, 544–559 (2010).

    Article  Google Scholar 

  115. Poljak, M. et al. Recommendations for cervical cancer prevention in Central and Eastern Europe and Central Asia. Vaccine 31 (Suppl. 7), H80–H82 (2013).

    Article  PubMed  Google Scholar 

  116. Dasbach, E. J., Largeron, N. & Elbasha, E. H. Assessment of the cost-effectiveness of a quadrivalent HPV vaccine in Norway using a dynamic transmission model. Expert Rev. Pharmacoecon. Outcomes Res. 8, 491–500 (2008).

    Article  PubMed  Google Scholar 

  117. Kim, J. J. & Goldie, S. J. Health and economic implications of HPV vaccination in the United States. N. Engl. J. Med. 359, 821–832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Usher, C. et al. Cost-effectiveness of human papillomavirus vaccine in reducing the risk of cervical cancer in Ireland due to HPV types 16 and 18 using a transmission dynamic model. Vaccine 26, 5654–5661 (2008).

    Article  PubMed  Google Scholar 

  119. Dasbach, E. J., Insinga, R. P. & Elbasha, E. H. The epidemiological and economic impact of a quadrivalent human papillomavirus vaccine (6/11/16/18) in the UK. BJOG 115, 947–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Jit, M., Choi, Y. H. & Edmunds, W. J. Economic evaluation of human papillomavirus vaccination in the United Kingdom. BMJ 337, a769 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kim, J. J., Ortendahl, J. & Goldie, S. J. Cost-effectiveness of human papillomavirus vaccination and cervical cancer screening in women older than 30 years in the United States. Ann. Intern. Med. 151, 538–545 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Elbasha, E. H., Dasbach, E. J., Insinga, R. P., Haupt, R. M. & Barr, E. Age-based programs for vaccination against HPV. Value Health 12, 697–707 (2009).

    Article  PubMed  Google Scholar 

  123. Dasbach, E. J., Nagy, L., Brandtmüller, A. & Elbasha, E. H. The cost effectiveness of a quadrivalent human papillomavirus vaccine (6/11/16/18) in Hungary. J. Med. Econ. 13, 110–118 (2010).

    Article  PubMed  Google Scholar 

  124. Olsen, J. & Jepsen, M. R. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark. Int. J. Technol. Assess. Health Care 26, 183–191 (2010).

    Article  PubMed  Google Scholar 

  125. Westra, T. A. et al. Until which age should women be vaccinated against HPV infection? Recommendation based on cost-effectiveness analyses. J. Infect. Dis. 204, 377–384 (2011).

    Article  PubMed  Google Scholar 

  126. Demarteau, N., Detournay, B., Tehard, B., El Hasnaoui, A. & Standaert, B. A generally applicable cost-effectiveness model for the evaluation of vaccines against cervical cancer. Int. J. Public Health 56, 153–162 (2011).

    Article  PubMed  Google Scholar 

  127. Bogaards, J. A., Coupé, V. M. H., Meijer, C. J. L. M. & Berkhof, J. The clinical benefit andcost-effectiveness of human papillomavirus vaccination for adult women in the Netherlands. Vaccine 29, 8929–8936 (2011).

    Article  PubMed  Google Scholar 

  128. Demarteau, N., Van Kriekinge, G. & Simon, P. Incremental cost-effectiveness evaluation of vaccinating girls against cervical cancer pre- and post-sexual debut in Belgium. Vaccine 31, 3962–3971 (2013).

    Article  PubMed  Google Scholar 

  129. Turner, H. C., Baussano, I. & Garnett, G. P. Vaccinating women previously exposed to human papillomavirus: a cost-effectiveness analysis of the bivalent vaccine. PLoS ONE 8, e75552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baussano, I., Lazzarato, F., Ronco, G., Dillner, J. & Franceschi, S. Benefits of catch-up in vaccination against human papillomavirus in medium- and low-income countries. Int. J. Cancer 133, 1876–1881 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Baussano, I., Dillner, J., Lazzarato, F., Ronco, G. & Franceschi, S. Upscaling human papillomavirus vaccination in high-income countries: impact assessment based on transmission model. Infect. Agent. Cancer 9, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Burger, E. A., Sy, S., Nygård, M., Kristiansen, I. S. & Kim, J. J. Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLoS ONE 9, e89974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jit, M., Brisson, M., Laprise, J.-F. & Choi, Y. H. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model. BMJ 350, g7584 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cervical cancer prevention. Cervical cancer prevention in Europe: CoheaHr [online], (2015).

  135. Lazcano-Ponce, E. et al. Specimen self-collection and HPV DNA screening in a pilot study of 100,242 women. Int. J. Cancer 135, 109–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  137. HPV 2015. 30th International Papillomavirus Conference, September 17–21, 2015, Lisbon, Portugal [online], (2015).

  138. Bruni, L. et al. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 202, 1789–1799 (2010).

    Article  PubMed  Google Scholar 

  139. Kyrgiou, M. et al. The up-to-date evidence on colposcopy practice and treatment of cervical intraepithelial neoplasia: the Cochrane colposcopy & cervical cytopathology collaborative group (C5 group) approach. Cancer Treat. Rev. 32, 516–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. McCredie, M. R. et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol. 9, 425–434 (2008).

    Article  PubMed  Google Scholar 

  141. Muñoz, N. et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet 373, 1949–1957 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the work of all the collaborators and personnel involved in the HPV European Consortium. The work of the authors was partially supported by the European Union Seventh Framework Programme (grant agreement #603019; CoheaHr) to all authors except S.M.G. and J.S.; the Spanish Ministry of Economy and Competitiveness via the Instituto de Salud Carlos III (RD12/0036/0056 and CIBERESP) to F.X.B., C.R., M.D., X.C., L.B. and S.d.S.; the Government of Catalonia via the Agència de Gestió d'Ajuts Universitaris i de Recerca (Agency for Management of University and Research Grant 2014SGR1077 and 2014SGR2016 to F.X.B., C.R., M.D., X.C., L.B. and S.d.S.); the Lilly Foundation (Premio de Investigación Biomédica Preclínica 2012 to F.X.B.); the National Institute of Public Health and the Environment (Bilthoven, Netherlands) to M.A.; the German Guideline Program in Oncology (German Cancer Aid project #110163 to M.A.); the Belgian Health Care Knowledge Centre (Brussels, Belgium) to M.A.; the Bill and Melinda Gates Foundation (OPP1053353 to I.B.); the Institut National du Cancer to C.C.; Zorgonderzoek Nederland-Medische Wetenschappen (ZON-MW) and the Dutch Cancer Society to C.J.L.M.M.; and Cancer Research UK (C569/A16891 to J.C.).

Author information

Authors and Affiliations

Authors

Contributions

F.X.B., C.R., M.D., M.A., I.B. and J.C. researched the data for article and wrote the manuscript. All authors made substantial contributions to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to F. Xavier Bosch.

Ethics declarations

Competing interests

F.X.B., C.R., M.D., X.C., L.B. and S.d.S. have received research funding via their institution from Genticel, GlaxoSmithKline, Merck, Qiagen, Roche, and Sanofi Pasteur MSD. F.X.B. has received reimbursement of travel expenses for attending symposia, meeting and/or conferences from GlaxoSmithKline, Merck, Qiagen, Roche, and Sanofi Pasteur MSD. C.C. has received reimbursement of travel expenses for attending symposia, meeting and/or conferences from Hologic, Roche, and Sanofi Pasteur MSD; and honoraria as a scientific advisory board member from Roche and Sanofi Pasteur MSD. J.D. has received research funding via his institution from Merck and Sanofi Pasteur MSD. K.-U.P. has received research funding via his institution from Sanofi Pasteur MSD; has been an consultant for Becton Dickinson, Roche Diagnostics, and Sanofi Pasteur MSD; and has receiving speakers' honoraria from Becton Dickinson, GlaxoSmithKline, and Roche. M.P. has received reimbursement of travel expenses for attending symposia, meeting and/or conferences, and honoraria for speaking and consultancy from Abbott. S.K.K. has received research funding via her institution, and honorarium as a scientific advisory board member and speaker from Merck and Sanofi Pasteur MSD. C.J.L.M.M. has received research funding from Abbott and Gen-Probe; has minority stock of Diassay and Self-Screen, a spin-off company of the Vrije Universiteit Medical Centre; has held shares in Delphi Biosciences, a former producer of a lavage self-sampling device for cervical cancer screening until 2014, when it went into receivership; has received honoraria from Genticel and Qiagen; has received honoraria occasionally as a scientific advisory board member or for serving at the speakers bureau of GlaxoSmithKline, Qiagen, Roche, and Sanofi Pasteur MSD/Merck; has received honoraria as speaker from Menarini and Seegene; and has received research funding via his institution from GlaxoSmithKline and Sanofi Pasteur MSD. S.M.G. has received research funding via her institution from CSL Bio, GlaxoSmithKline, and Merck; and is a member of the Merck Global Advisory Board and the Merck Scientific Advisory Committee for HPV (unpaid position). X.C. has received reimbursement of travel expenses for attending symposia, meeting and/or conferences from Genticel, GlaxoSmithKline, Merck, Sanofi Pasteur MSD, and Vianex. S.d.S. has received reimbursement of travel expenses for attending symposia, meeting and/or conferences from GlaxoSmithKline, Qiagen, and Sanofi Pasteur MSD. J.C. has received research funding via his institution from Abbott, Beckton Dickinson, Cepheid, Genera, Hologic, Qiagen, and Trovagene; honoraria from Hologic Cepheid, and Merck; and has been on sponsored speakers bureau for Trovagene. M.A., I.B., G.R., M.L. and J.S. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosch, F., Robles, C., Díaz, M. et al. HPV-FASTER: broadening the scope for prevention of HPV-related cancer. Nat Rev Clin Oncol 13, 119–132 (2016). https://doi.org/10.1038/nrclinonc.2015.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.146

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer