Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive effects of endocrine therapy for breast cancer: keep calm and carry on?

Key Points

  • Preclinical and clinical data indicate that endocrine treatment for breast cancer might have an adverse effect on cognition

  • Many studies exploring the influence of endocrine therapy on cognition are underpowered and have flawed designs, precluding any definite conclusions on the existence and clinical impact of such effects

  • Studies with a pretreatment neuropsychological assessment are essential to determine the potential cognitive effects of endocrine treatment and to identify patients who might be at risk of treatment-associated cognitive decline

  • Current guidelines permit the choice between different endocrine regimens in the treatment of breast cancer; thus, potential treatment-selective cognitive effects might influence treatment decision-making on an individualized basis

Abstract

The number of breast cancer survivors is gradually increasing and a subset of these patients experience long-term adverse effects of adjuvant systemic therapy, including cognitive decline. Surprisingly, relatively little is known about the long-term adverse effects of endocrine treatment on cognition. As 75% of all patients with breast cancer are eligible to receive hormonal treatment, understanding the potential neurocognitive adverse effects of such therapy is of utmost importance. Concerns about adverse cognitive effects of adjuvant endocrine therapy are timely, as recently updated guidelines recommend increasing the length of such therapy from 5 years to 10 years for a subset of patients. The decline of cognitive functions can have a detrimental impact on quality of life and might interfere with independent living. This Review discusses the tissue-selective side effects of endocrine therapies and specifically their impact on cognitive function, on the basis of clinical data; the neurobiological effects of endocrine therapies as observed in preclinical models are also discussed. We highlight the critical issues that need to be addressed in future preclinical and clinical studies in order to best assess the cognitive effects of endocrine treatment in patients with breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ER expression levels.
Figure 2: Endocrine therapies and tissue-selective effects.

Similar content being viewed by others

References

  1. Kamangar, F., Dores, G. M. & Anderson, W. F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24, 2137–2150 (2006).

    Article  PubMed  Google Scholar 

  2. Coombes, R. C. et al. Survival and safety of exemestane versus tamoxifen after 2–3 years' tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet 369, 559–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Jakesz, R. et al. Switching of postmenopausal women with endocrine-responsive early breast cancer to anastrozole after 2 years' adjuvant tamoxifen: combined results of ABCSG trial 8 and ARNO 95 trial. Lancet 366, 455–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359, 2131–2139 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. van de Velde, C. J. et al. Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377, 321–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Breast International Group 1–98 Collaborative, Group et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N. Engl. J. Med. 353, 2747–2757 (2005).

  7. Harbeck, N., Sotlar, K., Wuerstlein, R. & Doisneau-Sixou, S. Molecular and protein markers for clinical decision making in breast cancer: today and tomorrow. Cancer Treat. Rev. 40, 434–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Goldhirsch, A. et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 24, 2206–2223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, G. L. The long and short of tamoxifen therapy: a review of the ATLAS trial. J. Adv. Pract. Oncol. 5, 57–60 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Davies, C. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jakesz, R. et al. Extended adjuvant therapy with anastrozole among postmenopausal breast cancer patients: results from the randomized Austrian Breast and Colorectal Cancer Study Group Trial 6a. J. Natl Cancer Inst. 99, 1845–1853 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Goss, P. E. et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N. Engl. J. Med. 349, 1793–1802 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Dubsky, P. et al. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2− breast cancer patients. Br. J. Cancer 109, 2959–2964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filipits, M. et al. The PAM50 risk-of-recurrence score predicts risk for late distant recurrence after endocrine therapy in postmenopausal women with endocrine-responsive early breast cancer. Clin. Cancer Res. 20, 1298–1305 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Sestak, I. et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J. Clin. Oncol. 33, 916–922 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Wefel, J. S., Kesler, S. R., Noll, K. R. & Schagen, S. B. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA Cancer J. Clin. 65, 123–138 (2015).

    Article  PubMed  Google Scholar 

  17. Reid-Arndt, S. A., Yee, A., Perry, M. C. & Hsieh, C. Cognitive and psychological factors associated with early posttreatment functional outcomes in breast cancer survivors. J. Psychosoc. Oncol. 27, 415–434 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Ruiter, M. B. et al. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Hum. Brain Mapp. 33, 2971–2983 (2012).

    Article  PubMed  Google Scholar 

  19. Mandelblatt, J. S., Jacobsen, P. B. & Ahles, T. Cognitive effects of cancer systemic therapy: implications for the care of older patients and survivors. J. Clin. Oncol. 32, 2617–2626 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. O'Farrell, E., MacKenzie, J. & Collins, B. Clearing the air: a review of our current understanding of “chemo fog”. Curr. Oncol. Rep. 15, 260–269 (2013).

    Article  PubMed  Google Scholar 

  21. Vearncombe, K. J. et al. Cognitive effects of chemotherapy-induced menopause in breast cancer. Clin. Neuropsychol. 25, 1295–1313 (2011).

    Article  PubMed  Google Scholar 

  22. Schagen, S. B., Muller, M. J., Boogerd, W., Mellenbergh, G. J. & van Dam, F. S. Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J. Natl Cancer Inst. 98, 1742–1745 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Conroy, S. K., McDonald, B. C., Ahles, T. A., West, J. D. & Saykin, A. J. Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates. Brain Imaging Behav. 7, 491–500 (2013).

    Article  PubMed  Google Scholar 

  24. Jenkins, V. et al. A 3-year prospective study of the effects of adjuvant treatments on cognition in women with early stage breast cancer. Br. J. Cancer 94, 828–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castellon, S. A. et al. Neurocognitive performance in breast cancer survivors exposed to adjuvant chemotherapy and tamoxifen. J. Clin. Exp. Neuropsychol. 26, 955–969 (2004).

    Article  PubMed  Google Scholar 

  26. Collins, B., Mackenzie, J., Stewart, A., Bielajew, C. & Verma, S. Cognitive effects of chemotherapy in post-menopausal breast cancer patients 1 year after treatment. Psychooncology 18, 134–143 (2009).

    Article  PubMed  Google Scholar 

  27. Arevalo, M. A., Azcoitia, I. & Garcia-Segura, L. M. The neuroprotective actions of oestradiol and oestrogen receptors. Nat. Rev. Neurosci. 16, 17–29 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Esmaeili, B., Basseda, Z., Gholizadeh, S., Javadi Paydar, M. & Dehpour, A. R. Tamoxifen disrupts consolidation and retrieval of morphine-associated contextual memory in male mice: interaction with estradiol. Psychopharmacology (Berl.) 204, 191–201 (2009).

    Article  CAS  Google Scholar 

  29. Phillips, K. A., Ribi, K. & Fisher, R. Do aromatase inhibitors have adverse effects on cognitive function? Breast Cancer Res. 13, 203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McEwen, B. S., Akama, K. T., Spencer-Segal, J. L., Milner, T. A. & Waters, E. M. Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav. Neurosci. 126, 4–16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Azcoitia, I., Yague, J. G. & Garcia-Segura, L. M. Estradiol synthesis within the human brain. Neuroscience 191, 139–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Velazquez-Zamora, D. A. et al. Plastic changes in dendritic spines of hippocampal CA1 pyramidal neurons from ovariectomized rats after estradiol treatment. Brain Res. 1470, 1–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Fester, L. et al. Estrogen-regulated synaptogenesis in the hippocampus: sexual dimorphism in vivo but not in vitro. J. Steroid Biochem. Mol. Biol. 131, 24–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Brueggemeier, R. W. Aromatase inhibitors: new endocrine treatment of breast cancer. Semin. Reprod. Med. 22, 31–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Fester, L., Prange-Kiel, J., Jarry, H. & Rune, G. M. Estrogen synthesis in the hippocampus. Cell Tissue Res. 345, 285–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Ito, K. et al. A case of brain metastases from breast cancer that responded to anastrozole monotherapy. Breast J. 15, 435–437 (2009).

    Article  PubMed  Google Scholar 

  37. Kil, K. E. et al. Synthesis and PET studies of [(11)C-cyano]letrozole (Femara), an aromatase inhibitor drug. Nucl. Med. Biol. 36, 215–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lien, E. A., Solheim, E. & Ueland, P. M. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res. 51, 4837–4844 (1991).

    CAS  PubMed  Google Scholar 

  39. Gonzalez, M. et al. Distribution patterns of estrogen receptor alpha and beta in the human cortex and hippocampus during development and adulthood. J. Comp. Neurol. 503, 790–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zwart, W. et al. The hinge region of the human estrogen receptor determines functional synergy between AF1 and AF2 in the quantitative response to estradiol and tamoxifen. J. Cell Sci. 123, 1253–1261 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. McInerney, E. M., Weis, K. E., Sun, J., Mosselman, S. & Katzenellenbogen, B. S. Transcription activation by the human estrogen receptor subtype beta (ER beta) studied with ER beta and ER alpha receptor chimeras. Endocrinology 139, 4513–4522 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Hall, J. M. & McDonnell, D. P. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140, 5566–5578 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Roger, P. et al. Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res. 61, 2537–2541 (2001).

    CAS  PubMed  Google Scholar 

  44. Osterlund, M. K., Gustafsson, J. A., Keller, E. & Hurd, Y. L. Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA. J. Clin. Endocrinol. Metab. 85, 3840–3846 (2000).

    CAS  PubMed  Google Scholar 

  45. Dubal, D. B., Shughrue, P. J., Wilson, M. E., Merchenthaler, I. & Wise, P. M. Estradiol modulates bcl2 in cerebral ischemia: a potential role for estrogen receptors. J. Neurosci. 19, 6385–6393 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitterling, K. L. et al. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus. J. Comp. Neurol. 518, 2729–2743 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gibbs, R. B. & Johnson, D. A. Sex-specific effects of gonadectomy and hormone treatment on acquisition of a 12-arm radial maze task by Sprague Dawley rats. Endocrinology 149, 3176–3183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao, F. et al. Ovariectomy-mediated impairment of spatial working memory, but not reference memory, is attenuated by the knockout of the dopamine D(3) receptor in female mice. Behav. Brain Res. 247, 27–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Li, C. et al. Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proc. Natl Acad. Sci. USA 101, 2185–2190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandez, S. M. et al. Estradiol-induced enhancement of object memory consolidation involves hippocampal extracellular signal-regulated kinase activation and membrane-bound estrogen receptors. J. Neurosci. 28, 8660–8667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jasnow, A. M., Schulkin, J. & Pfaff, D. W. Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expression in the central amygdala in female mice. Horm. Behav. 49, 197–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, D., Wu, C. F., Shi, B. & Xu, Y. M. Tamoxifen and toremifene cause impairment of learning and memory function in mice. Pharmacol. Biochem. Behav. 71, 269–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Mook, D., Felger, J., Graves, F., Wallen, K. & Wilson, M. E. Tamoxifen fails to affect central serotonergic tone but increases indices of anxiety in female rhesus macaques. Psychoneuroendocrinology 30, 273–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Aydin, M. et al. Effects of letrozole on hippocampal and cortical catecholaminergic neurotransmitter levels, neural cell adhesion molecule expression and spatial learning and memory in female rats. Neuroscience 151, 186–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, L. et al. Aromatase inhibitors induce spine synapse loss in the hippocampus of ovariectomized mice. Endocrinology 151, 1153–1160 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Grassi, S. et al. Neural 17beta-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience 192, 67–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Velazquez-Zamora, D. A., Garcia-Segura, L. M. & Gonzalez-Burgos, I. Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm. Behav. 61, 512–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Sharma, K. & Mehra, R. D. Long-term administration of estrogen or tamoxifen to ovariectomized rats affords neuroprotection to hippocampal neurons by modulating the expression of Bcl2 and Bax. Brain Res. 1204, 1–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. McMillan, P. J., LeMaster, A. M. & Dorsa, D. M. Tamoxifen enhances choline acetyltransferase mRNA expression in rat basal forebrain cholinergic neurons. Brain Res. Mol. Brain Res. 103, 140–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, X. et al. Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats. Brain Res. 847, 98–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Silva, I., Mello, L. E., Freymuller, E., Haidar, M. A. & Baracat, E. C. Estrogen, progestogen and tamoxifen increase synaptic density of the hippocampus of ovariectomized rats. Neurosci. Lett. 291, 183–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Vierk, R. et al. Aromatase inhibition abolishes LTP generation in female but not in male mice. J. Neurosci. 32, 8116–8126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Couse, J. F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, L., Andersson, S., Warner, M. & Gustafsson, J. A. Morphological abnormalities in the brains of estrogen receptor beta knockout mice. Proc. Natl Acad. Sci. USA 98, 2792–2796 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harris, H. A. Estrogen receptor-beta: recent lessons from in vivo studies. Mol. Endocrinol. 21, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Gundlah, C., Lu, N. Z., Mirkes, S. J. & Bethea, C. L. Estrogen receptor beta (ERbeta) mRNA and protein in serotonin neurons of macaques. Brain Res. Mol. Brain Res. 91, 14–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Amin, Z., Canli, T. & Epperson, C. N. Effect of estrogen-serotonin interactions on mood and cognition. Behav. Cogn. Neurosci. Rev. 4, 43–58 (2005).

    Article  PubMed  Google Scholar 

  68. Sumner, B. E. et al. Effects of tamoxifen on serotonin transporter and 5hydroxytryptamine(2A) receptor binding sites and mRNA levels in the brain of ovariectomized rats with or without acute estradiol replacement. Brain Res. Mol. Brain Res. 73, 119–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Mize, A. L., Shapiro, R. A. & Dorsa, D. M. Estrogen receptor-mediated neuroprotection from oxidative stress requires activation of the mitogen-activated protein kinase pathway. Endocrinology 144, 306–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Luine, V. N. Estradiol and cognitive function: past, present and future. Horm. Behav. 66, 602–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toffoletto, S., Lanzenberger, R., Gingnell, M., Sundstrom-Poromaa, I. & Comasco, E. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: A systematic review. Psychoneuroendocrinology 50, 28–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Sherwin, B. B. Estrogen and cognitive functioning in women: lessons we have learned. Behav. Neurosci. 126, 123–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Sherwin, B. B. & Henry, J. F. Brain aging modulates the neuroprotective effects of estrogen on selective aspects of cognition in women: a critical review. Front. Neuroendocrinol. 29, 88–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Sherwin, B. B. The critical period hypothesis: can it explain discrepancies in the oestrogen-cognition literature? J. Neuroendocrinol. 19, 77–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Luetters, C. et al. Menopause transition stage and endogenous estradiol and follicle-stimulating hormone levels are not related to cognitive performance: cross-sectional results from the study of women's health across the nation (SWAN). J. Womens Health (Larchmt) 16, 331–344 (2007).

    Article  Google Scholar 

  76. Schmidt, P. J. et al. Cognitive performance in healthy women during induced hypogonadism and ovarian steroid addback. Arch. Womens Ment. Health 16, 47–58 (2013).

    Article  PubMed  Google Scholar 

  77. Maki, P. M., Rich, J. B. & Rosenbaum, R. S. Implicit memory varies across the menstrual cycle: estrogen effects in young women. Neuropsychologia 40, 518–529 (2002).

    Article  PubMed  Google Scholar 

  78. Henderson, V. W. & Sherwin, B. B. Surgical versus natural menopause: cognitive issues. Menopause 14, 572–579 (2007).

    Article  PubMed  Google Scholar 

  79. Drake, E. B. et al. Associations between circulating sex steroid hormones and cognition in normal elderly women. Neurology 54, 599–603 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Rocca, W. A. et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 69, 1074–1083 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Phung, T. K. et al. Hysterectomy, oophorectomy and risk of dementia: a nationwide historical cohort study. Dement. Geriatr. Cogn. Disord. 30, 43–50 (2010).

    Article  PubMed  Google Scholar 

  82. Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rocca, W. A., Grossardt, B. R. & Shuster, L. T. Oophorectomy, estrogen, and dementia: a 2014 update. Mol. Cell. Endocrinol. 389, 7–12 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ryan, J. et al. Impact of a premature menopause on cognitive function in later life. BJOG 121, 1729–1739 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Shumaker, S. A. et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 289, 2651–2662 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Coker, L. H. et al. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies. Neurology 82, 427–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Paganini-Hill, A. & Clark, L. J. Preliminary assessment of cognitive function in breast cancer patients treated with tamoxifen. Breast Cancer Res. Treat. 64, 165–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Maki, P. Is timing everything? New insights into why the effect of estrogen therapy on memory might be age dependent. Endocrinology 154, 2570–2572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eberling, J. L., Wu, C., Tong-Turnbeaugh, R. & Jagust, W. J. Estrogen- and tamoxifen-associated effects on brain structure and function. Neuroimage 21, 364–371 (2004).

    Article  PubMed  Google Scholar 

  90. Hanssen, K. T., Beiske, A. G., Landro, N. I. & Hessen, E. Predictors of executive complaints and executive deficits in multiple sclerosis. Acta Neurol. Scand. 129, 234–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Lannoo, E. et al. Subjective complaints versus neuropsychological test performance after moderate to severe head injury. Acta Neurochir. (Wien) 140, 245–253 (1998).

    Article  CAS  Google Scholar 

  92. Edmonds, E. C., Delano-Wood, L., Galasko, D. R., Salmon, D. P. & Bondi, M. W. Subjective cognitive complaints contribute to misdiagnosis of mild cognitive impairment. J. Int. Neuropsychol. Soc. 20, 836–847 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gorman, A. A., Foley, J. M., Ettenhofer, M. L., Hinkin, C. H. & van Gorp, W. G. Functional consequences of HIV-associated neuropsychological impairment. Neuropsychol. Rev. 19, 186–203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hutchinson, A. D., Hosking, J. R., Kichenadasse, G., Mattiske, J. K. & Wilson, C. Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treat. Rev. 38, 926–934 (2012).

    Article  PubMed  Google Scholar 

  95. Cuzick, J. et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383, 1041–1048 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Jenkins, V., Shilling, V., Fallowfield, L., Howell, A. & Hutton, S. Does hormone therapy for the treatment of breast cancer have a detrimental effect on memory and cognition? A pilot study. Psychooncology 13, 61–66 (2004).

    Article  PubMed  Google Scholar 

  97. Schilder, C. M. et al. Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. J. Clin. Oncol. 28, 1294–1300 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Phillips, K. A. et al. Cognitive function in postmenopausal women receiving adjuvant letrozole or tamoxifen for breast cancer in the BIG 1–98 randomized trial. Breast 19, 388–395 (2010).

    Article  PubMed  Google Scholar 

  99. Phillips, K. A. et al. Cognitive function in postmenopausal breast cancer patients one year after completing adjuvant endocrine therapy with letrozole and/or tamoxifen in the BIG 1–98 trial. Breast Cancer Res. Treat. 126, 221–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Jenkins, V. A. et al. Effects of anastrozole on cognitive performance in postmenopausal women: a randomised, double-blind chemoprevention trial (IBIS II). Lancet Oncol. 9, 953–961 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Wefel, J. S. & Schagen, S. B. Chemotherapy-related cognitive dysfunction. Curr. Neurol. Neurosci. Rep. 12, 267–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Ahles, T. A., Root, J. C. & Ryan, E. L. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J. Clin. Oncol. 30, 3675–3686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Collins, B., Mackenzie, J., Stewart, A., Bielajew, C. & Verma, S. Cognitive effects of hormonal therapy in early stage breast cancer patients: a prospective study. Psychooncology 18, 811–821 (2009).

    Article  PubMed  Google Scholar 

  104. Lejbak, L., Vrbancic, M. & Crossley, M. Endocrine therapy is associated with low performance on some estrogen-sensitive cognitive tasks in postmenopausal women with breast cancer. J. Clin. Exp. Neuropsychol. 32, 836–846 (2010).

    Article  PubMed  Google Scholar 

  105. Boele, F. W., Schilder, C. M., de Roode, M. L., Deijen, J. B. & Schagen, S. B. Cognitive functioning during long-term tamoxifen treatment in postmenopausal women with breast cancer. Menopause 22, 17–25 (2015).

    Article  PubMed  Google Scholar 

  106. Hermelink, K. et al. Short-term effects of treatment-induced hormonal changes on cognitive function in breast cancer patients: results of a multicenter, prospective, longitudinal study. Cancer 113, 2431–2439 (2008).

    Article  PubMed  Google Scholar 

  107. Breckenridge, L. M., Bruns, G. L., Todd, B. L. & Feuerstein, M. Cognitive limitations associated with tamoxifen and aromatase inhibitors in employed breast cancer survivors. Psychooncology 21, 43–53 (2012).

    Article  PubMed  Google Scholar 

  108. Bender, C. M. et al. Memory impairments with adjuvant anastrozole versus tamoxifen in women with early-stage breast cancer. Menopause 14, 995–998 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ganz, P. A. et al. Cognitive function after the initiation of adjuvant endocrine therapy in early-stage breast cancer: an observational cohort study. J. Clin. Oncol. 32, 3559–3567 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hurria, A. et al. The effect of aromatase inhibition on the cognitive function of older patients with breast cancer. Clin. Breast Cancer 14, 132–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Drukker, C. A. et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int. J. Cancer 133, 929–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bogaerts, J. et al. Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat. Clin. Pract. Oncol. 3, 540–551 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Doyle, K. L. et al. Real-world impact of neurocognitive deficits in acute and early HIV infection. J. Neurovirol. 19, 565–573 (2013).

    Article  PubMed  Google Scholar 

  115. Tucker-Drob, E. M. Neurocognitive functions and everyday functions change together in old age. Neuropsychology 25, 368–377 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dixon, J. M. et al. Anastrozole and letrozole: an investigation and comparison of quality of life and tolerability. Breast Cancer Res. Treat. 125, 741–749 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Fallowfield, L. J. et al. Long-term assessment of quality of life in the Intergroup Exemestane Study: 5 years post-randomisation. Br. J. Cancer 106, 1062–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tevaarwerk, A. J. et al. Phase III comparison of tamoxifen versus tamoxifen plus ovarian function suppression in premenopausal women with node-negative, hormone receptor-positive breast cancer (E3193, INT0142): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 32, 3948–3958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van den Bent, M. J. et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 12, 583–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 2: neurocognitive, neurological, and qualityoflife outcomes. A report from the RANO group. Lancet Oncol. 14, e407–e416 (2013).

    Article  PubMed  Google Scholar 

  121. Wefel, J. S., Vardy, J., Ahles, T. & Schagen, S. B. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 12, 703–708 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Tesa Severson for critically reading the manuscript. The work of W.Z. is supported by an Alpe d'HuZes foundation/KWF Dutch Cancer Society Bas Mulder Award, A Sister's Hope and a Veni grant from The Netherlands Organization for Scientific Research (NWO). S.B.S. is supported by Dutch Cancer Society and Pink Ribbon grants, and S.C.L. by A Sister's Hope grant. S.C.L. is affiliated with the Department of Pathology, University Medical Center Utrecht.

Author information

Authors and Affiliations

Authors

Contributions

H.T. researched the data under supervision of W.Z. and W.Z. and S.B.S. wrote the manuscript with input from H.T. and S.C.L.

Corresponding authors

Correspondence to Wilbert Zwart or Sanne B. Schagen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table

Overview of neuropsychological studies aimed to investigate the cognitive impact of endocrine therapies in breast cancer. (DOC 68 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwart, W., Terra, H., Linn, S. et al. Cognitive effects of endocrine therapy for breast cancer: keep calm and carry on?. Nat Rev Clin Oncol 12, 597–606 (2015). https://doi.org/10.1038/nrclinonc.2015.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.124

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer