Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of androgen receptor targeted therapy for advanced prostate cancer

Key Points

  • The discovery of androgen dependence in prostate cancer in 1941 by Huggins and colleagues still remains the backbone for the treatment of advance-staged prostate cancer

  • Over the past decade, the better understanding of the mechanisms driving resistance to castration has led to development of abiraterone acetate and enzalutamide, two next-generation androgen receptor (AR) targeting agents

  • Several challenges remain including resistance to continued blocking of the AR axis, cross-resistance between agents, ideal sequence of administration, combination strategies, and coordination with other treatments

  • Molecular characterization of patients, through next-generation sequencing or transcriptome analysis, will help to dissect mechanisms of resistance and to identify biomarkers allowing the selection of patients for specific treatment

  • The improved understanding of intra-patient molecular heterogeneity and of the multiple, redundant and compensatory signalling networks in cancers supports a role for rational combinatorial, targeted therapeutic approaches

Abstract

The discovery of androgen dependence in prostate cancer in 1941 by Huggins and colleagues has remained the backbone for the treatment of this disease. However, although many patients initially respond to androgen depletion therapy, they almost invariably relapse and develop resistance with transition of the disease to a castration-resistant state. Over the past decade, the better understanding of the mechanisms that drive resistance to castration has led to the development of next-generation androgen receptor targeting agents such as abiraterone acetate and enzalutamide. This Review aims to revisit the discovery and evolution of androgen receptor targeting therapeutics for the treatment of advanced-stage prostate cancer over the years and to discuss the upcoming future and challenges in the treatment of this common cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: AR targeting treatment strategies in CRPC.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Huggins, C., Stephens, R. E. & Hodges, C. V. Studies on prostate cancer II. The effects of castration on advanced carcinoma of the prostate. Arch. Surg. 43, 209–223 (1941).

    Article  CAS  Google Scholar 

  3. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2001).

    Article  Google Scholar 

  4. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Omlin, A. et al. Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms. Eur. Urol. 64, 300–306 (2013).

    Article  PubMed  Google Scholar 

  7. Walshe, W. H. The Nature and Treatment of Cancer (London: Taylor and Walton, 1846).

    Google Scholar 

  8. Lytton, B. Prostate cancer: a brief history and the discovery of hormonal ablation treatment. J. Urol. 165, 1859–1862 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Chang, C. S., Kokontis, J. & Liao. S. T. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240, 324–326 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. The Nobel Prize in Physiology or Medicine 1966. Nobelprize.org [online], (2014).

  11. Veterans Administration Cooperative Urological Research Group. Treatment and survival of patients with cancer of the prostate. Surg. Gynecol. Obstet. 124, 1011–1017 (1967).

  12. Schally, A. V., Kastin, A. J. & Arimura, A. Hypothalamic FSH and LH-regulating hormone: structure, physiology and clinical studies. Fertil. Steril. 22, 703–721 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Schally, A. V. et al. Peptide analogs in the therapy of prostate cancer. Prostate 45, 158–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Vilchez-Martinez, J. A., Pedroza, E., Arimura, A. & Schally, A. V. Paradoxical effects of D-Trp6-luteinizing hormone-releasing hormone on the hypothalamicpituitary-gonadal axis in immature female rats. Fertil. Steril. 31, 677–682 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Sandow, J., Von Rechenberg, W., Jerzabek, G. & Stoll, W. Pituitary gonadotropin inhibition by a highly active analog of luteinizing hormone-releasing hormone. Fertil. Steril. 30, 205–209 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. The Nobel Prize in Physiology or Medicine 1977. Nobelprize.org [online], (2014).

  17. Seidenfeld, J. et al. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann. Intern. Med. 132, 566–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Byar, D. P. & Corle, D. K. Hormone therapy for prostate cancer: results of the Veterans Administration Cooperative Urological Research Group studies. NCI Monogr. 7, 165–170 (1988).

    Google Scholar 

  19. The Leuprolide Study Group. Leuprolide versus diethylstilbestrol for metastatic prostate cancer. N. Engl. J. Med. 311, 1281–1286 (1984).

  20. Van Poppel, H. & Nilsson, S. Testosterone surge: rationale for gonadotropin releasing hormone blockers? Urology 71, 1001–1006 (2008).

    Article  PubMed  Google Scholar 

  21. Princivalle, M. et al. Rapid suppression of plasma testosterone levels and tumor growth in the Dunning rat model treated with degarelix, a new gonadotropin-releasing hormone antagonist. J. Pharmacol. Exp. Ther. 320, 1113–1118 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Gittelman, M. et al. A 1-year, open label, randomized phase II dose finding study of degarelix for the treatment of prostate cancer in North America. J. Urol. 180, 1986–1992 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Klotz, L. et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel group phase III study in patients with prostate cancer. BJU Int. 102, 1531–1538 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Van Poppel, H. et al. Degarelix: a novel gonadotropin-releasing hormone (GnRH) receptor blocker—results from a 1-yr, multicentre, randomised, phase 2 dosage-finding study in the treatment of prostate cancer. Eur. Urol. 54, 805–813 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Anderson, K. M. & Liao, S. Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219, 277–279 (1968).

    Article  CAS  PubMed  Google Scholar 

  26. Bruchovsky, N. & Wilson, J. D. The intranuclear binding of testosterone and 5-α-androstan-17-β-ol-3-one by rat prostate. J. Biol. Chem. 243, 5953–5960 (1968).

    CAS  PubMed  Google Scholar 

  27. Mainwaring, W. I. A soluble androgen receptor in the cytoplasm of rat prostate. J. Endocrinol. 45, 531–541 (1969).

    Article  CAS  PubMed  Google Scholar 

  28. Steinberg, G. D. & Isaacs, J. T. in Cancer Chemotherapy/Frontiers in Pharmacology (eds Hickman, J. & Tritton, T.) 322–343 (Blackwell, London, 1993).

    Google Scholar 

  29. Pavone-Macaluso, M. et al. Comparison of diethylstilbestrol, cyproterone acetate and medroxyprogesterone acetate in the treatment of advanced prostatic cancer: final analysis of a randomized phase III trial of the European Organization for Research on Treatment of Cancer Urological Group. J. Urol. 136, 624–631 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Liao, S., Howell, D. K. & Chang, T. M. Action of a nonsteroidal antiandrogen, flutamide, on the receptor binding and nuclear retention of 5α-dihydrotestosterone in rat ventral prostate. Endocrinology 94, 1205–1209 (1974).

    Article  CAS  PubMed  Google Scholar 

  31. US Food and Drug Administration. Flutamide (Eulexin) Label and Approval History [online], (2014).

  32. Labrie, F. et al. New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin. Invest. Med. 5, 267–275 (1982).

    CAS  PubMed  Google Scholar 

  33. Lefebvre, F. A. et al. Combined long-term treatment with an LHRH agonist and a pure antiandrogen blocks androgenic influence in the rat. Prostate 3, 569–578 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt, B., Bennett, C., Seidenfeld, J., Samson, D. & Wilt, T. Maximal androgenblockade for advanced prostate cancer. Cochrane Database Systematic Reviews. Issue 2. Art. No: CD001526. http://dx.doi.10.1002/14651858.CD001526 (2000).

  35. Akaza, H. et al. Combined androgen blockade with bicalutamide for advanced prostate cancer long-term follow-up of a phase 3, double-blind, randomized study for survival. Cancer 115, 3437–3445 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Taplin, M. E. et al. Androgen receptor mutations in androgen-independent prostate cancer: cancer and Leukemia Group B Study 9663. J. Clin. Oncol. 21, 2673–2678 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Attard, G. & de Bono, J. S. Translating scientific advancement into clinical benefit for castration-resistant prostate cancer patients. Clin. Cancer Res. 17, 3867–3875 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Alva, A. & Hussain, M. The changing natural history of metastatic prostate cancer. Cancer J. 19, 19–24 (2013).

    Article  PubMed  Google Scholar 

  39. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Roy, A. K. et al. Regulation of androgen action. Vit. Horm. 55, 309–352 (1998).

    Article  Google Scholar 

  41. Roy, A. K. et al. Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann. NY Acad. Sci. 949, 44–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Edwards, J. & Bartlett, J. M. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: modifications to the androgen receptor. BJU Int. 95, 1320–1326 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, S., Jenster, G. & Epner, D. E. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol. Endocrinol. 14, 753–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Xu, Y., Chen, S. Y., Ross, K. N. & Balk, S. P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and posttranscriptional increases in cyclin D proteins. Cancer Res. 66, 7783–7792 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen independent prostate cancer. Cell 138, 245–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cerveira, N. et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 8, 826–832 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tomlins, S. A. et al. Chinnaiyan, A. M. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66, 3396–3400 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. King, J. C. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41, 524–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, Y. et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat. Med. 19, 1023–1029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tomlins, S. A. et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ryan, C. J. & Tindall, D. J. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J. Clin. Oncol. 29, 3651–3658 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Attard, G., Richards, J. & de Bono, J. S. New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clin. Cancer Res. 17, 1649–1657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Labrie, F. Adrenal androgens and intracrinology. Semin. Reprod. Med. 22, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Mohler, J. L. et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10, 440–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B. & Mohler, J. L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11, 4653–4657 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Page, S. T. et al. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J. Clin. Endocrinol. Metab. 91, 3850–3856 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Ferraldeschi, R., Sharifi, N., Auchus, R. J. & Attard, G. Molecular pathways: Inhibiting steroid biosynthesis in prostate cancer. Clin. Cancer Res. 19, 3353–3359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Edwards, J., Krishna, N. S., Grigor, K. M. & Bartlett, J. M. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br. J. Cancer 89, 552–556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Holzbeierlein, J. et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am. J. Pathol. 164, 217–227 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yap, T. A., Zivi, A., Omlin, A. & de Bono, J. S. The changing therapeutic landscape of castration-resistant prostate cancer. Nat. Rev. Clin. Oncol. 8, 597–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Small, E. J. et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen- independent prostate cancer patients: a phase III trial (CALGB 9583). J. Clin. Oncol. 22, 1025–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Sartor, A. O. et al. Antiandrogen withdrawal in castrate-refractory prostate cancer: a Southwest Oncology Group trial (SWOG 9426). Cancer 112, 2393–2400 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Small, E. J. & Srinivas, S. The anti-androgen withdrawal syndrome. Experience in a large cohort of unselected patients with advanced prostate cancer. Cancer 76, 1428–1434 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Sadar, M. D. Small molecule inhibitors targeting the “achilles' heel” of androgen receptor activity. Cancer Res. 71, 1208–1213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, S. et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J. Clin. Invest. 120, 2715–2730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jenster, G. et al. Identification of two transcription activation units in the N.-terminal domain of the human androgen receptor. J. Biol. Chem. 270, 7341–7346 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Whitaker, H. C. & Neal, D. E. RAS pathways in prostate cancer—mediators of hormone resistance? Curr. Cancer Drug Targets 10, 834–839 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, J. D. et al. Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J. Cell Biochem. 99, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Wen, Y. et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 60, 6841–6845 (2000).

    CAS  PubMed  Google Scholar 

  76. Craft, N., Shostak, Y., Carey, M. & Sawyers, C. L. A mechanism for hormone independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Signoretti, S. et al. Her-2- neu expression and progression toward androgen independence in human prostate cancer. J. Natl Cancer Inst. 92, 1918–1925 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Yuan, X. et al. Androgen receptor remains critical for cell-cycle progression in androgen-independent CWR22 prostate cancer cells. Am. J. Pathol. 169, 682–696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mulholland, D. J. et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19, 792–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Attard, G., Belldegrun, A. S. & de Bono, J. S. Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU Int. 96, 1241–1246 (2005).

    Article  PubMed  Google Scholar 

  83. Trachtenberg, J., Halpern, N. & Pont, A. Ketoconazole: a novel and rapid treatment for advanced prostatic cancer. J. Urol. 130, 152–153 (1983).

    Article  CAS  PubMed  Google Scholar 

  84. Loose, D. S., Kan, P. B., Hirst, M. A., Marcus, R. A. & Feldman, D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J. Clin. Invest. 71, 1495–1499 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Jarman, M., Barrie, S. E., Leung, C. S. & Rowlands, M. G. Selective inhibition of cholesterol side-chain cleavage by potential pro-drug forms of aminoglutethimide. Anticancer Drug Des. 3, 185–190 (1988).

    CAS  PubMed  Google Scholar 

  87. Attard, G. et al. Phase I clinical trial of selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Danila, D. C. et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castrastion-resistant prostate cancer. J. Clin. Oncol. 28, 1496–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reid, A. H. et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol. 28, 1489–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ryan, C. J. et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration- resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol. 28, 1481–1488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Attard, G. et al. Clinical and biochemical consequences of cyp17a1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab. 97, 507–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Fizazi, K. et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 13, 983–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Lorente, D. et al. Tumor responses after steroid switch of prednisolone (P) to dexamethasone (D) in castration-resistant prostate cancer (CRPC) patients (pts) on abiraterone acetate (AA) [abstract]. Eur. J. Cancer 49 (Suppl. 2), a2918 (2013).

    Google Scholar 

  94. Sharifi, N. Steroid receptors aplenty in prostate cancer. N. Engl. J. Med. 370, 970–971 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Dreicer, R. et al. Safety, pharmacokinetics, and efficacy of TAK-700 in castration-resistant, metastatic prostate cancer: A phase I/II, open-label study [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a3084 (2010).

    Article  Google Scholar 

  96. Agus, D. B. et al. Safety, efficacy, and pharmacodynamics of the investigational agent orteronel (TAK-700) in metastatic castration-resistant prostate cancer (mCRPC): updated data from a phase I/II study [abstract]. J. Clin. Oncol. 30 (Suppl. 5), a98 (2012).

    Article  Google Scholar 

  97. George, D. J. C. P. et al. Safety and activity of the investigational agent orteronel (ortl) without prednisone in men with non-metastatic castration-resistant prostate cancer (nmCRPC) and rising prostate-specific antigen (PSA): updated results of a phase II study [abstract]. J. Clin. Oncol. 30 (Suppl.), a4549 (2012).

    Google Scholar 

  98. Petrylak, D. et al. A phase I/II study of safety and efficacy of orteronel (TAK-700), an oral, investigational, nonsteroidal 17,20-lyase inhibitor, with docetaxel and prednisone (DP) in metastatic castration-resistant prostate cancer (mCRPC): Updated phase II results [abstract]. J. Clin. Oncol. 31 (Suppl. 6), a59 (2013).

    Article  Google Scholar 

  99. Hussain, M. et al. Safety, efficacy, and health-related quality of life (HRQoL) of the investigational single agent orteronel (ortl) in nonmetastatic castration-resistant prostate cancer (nmCRPC). J. Clin. Oncol. 31 (Suppl.), a5076 (2013).

    Google Scholar 

  100. Takeda Newsroom July—September 2013. Takeda Pharmaceutical Company Limited [online], (2013).

  101. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  102. Handratta, V. D. et al. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J. Med. Chem. 48, 2972–2984 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Vasaitis, T. et al. Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer. Mol. Cancer Ther. 7, 2348–2357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bruno, R. D., Gover, T. D., Burger, A. M., Brodie, A. M. & Njar, V. C. 17 alpha-Hydroxylase/17,20 lyase inhibitor VN/124–121 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol. Cancer Ther. 7, 2828–2836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schayowitz, A., Sabnis, G., Njar, V. C., Brodie, A. M. Synergistic effect of a novel anti-androgen, VN/124–1, and signal transduction inhibitors in prostate cancer progression to hormone independence in vitro. Mol. Cancer Ther. 7, 121–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Taplin, M. E. C. F. et al. ARMOR1: safety of galeterone (TOK-001) in a phase 1 clinical trial in chemotherapy naive patients with castration resistant prostate cancer (CRPC) [abstract]. Cancer Res. 72 (Suppl. 8), CT-07 (2012).

    Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  108. Eisner, J. R. et al. VT-464: A novel, selective inhibitor of P450c17(CYP17)-17,20 lyase for castration-refractory prostate cancer (CRPC) [abstract]. J. Clin. Oncol. 30 (Suppl. 5), a198 (2012).

    Article  Google Scholar 

  109. Figg, W. D. et al. Activity of oral VT-464, a selective CYP17-lyase inhibitor, in the LNCaP prostate cancer xenograft [abstract]. J. Clin. Oncol. 30 (Suppl. 5), a4671 (2012).

    Google Scholar 

  110. EU Clinical Trials Register. ClinicalTrialsRegister.eu [online], (2014).

  111. Stanbrough, M. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen independent prostate cancer. Cancer Res. 66, 2815–2825 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Fung, K. M. et al. Increased expression of type 2 3α- hydroxysteroid dehydrogenase/type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. Endocr. Relat. Cancer 13, 169–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Labrie, F. et al. The key role of 17 β-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62, 148–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Lin, H. K. et al. Expression and characterization of recombinant type 2 3α-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3α/17β-HSD activity and cellular distribution. Mol. Endocrinol. 11, 1971–1984 (1997).

    CAS  PubMed  Google Scholar 

  115. Kikuchi, A. et al. ASP9521, a novel, selective, orally bioavailable AKR1C3 (type 5,17β-hydroxysteroid dehydrogenase) inhibitor: In vitro and in vivo characterization [abstract]. J. Clin. Oncol. 31 (Suppl.), a5046 (2013).

    Google Scholar 

  116. Loriot, Y. et al. Safety, tolerability and anti-tumour activity of the androgen biosynthesis inhibitor ASP9521 in patients with progressive metastatic castration-resistant prostate cancer (mCRPC): Multi-centre phase I/II study [abstract]. Eur. J. Cancer 49 (Suppl. 3), LBA22 (2013).

    Google Scholar 

  117. Montgomery, R. B. et al. Maintenance of intratumoral androgens in the metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, Y., Clegg, N. J. & Scher, H. I. Antiandrogens and androgen depleting therapies in prostate cancer: novel agents for an established target. Lancet Oncol. 10, 981–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scher, H. I. & Sawyers, C. Biology of progressive castration resistant prostate cancer: directed therapies targeting the androgen receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Ferraldeschi, R., Pezaro, C., Karavasilis, V. & de Bono, J. Abiraterone and novel antiandrogens: overcoming castration resistance in prostate cancer. Annu. Rev. Med. 64, 1–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Jung, M. E. et al. Structure-activity relationship for thiohydantoin androgen receptor antagonists for castration resistant prostate cancer. J. Med. Chem. 53, 2779–2796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. US Food and Drug Administration. Enzulatamide (Xtandi Capsules) [online], (2012).

  125. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  126. Medivation. Medivation Investor Relations [online], (2013).

  127. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  128. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  129. Clegg, N. J. et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rathkopf, D. E. et al. Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-resistant prostate cancer. J. Clin Oncol. 31, 3525–3530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  132. Rathkopf, D. E. et al. A phase II study of the androgen signaling inhibitor ARN-509 in patients with castration resistant prostate cancer (CRPC) [abstract]. J. Clin. Oncol. 30 (Suppl.), TPS4697 (2012).

    Google Scholar 

  133. Smith, M. R. et al. ARN-509 in men with high-risk non-metastatic castration-resistant prostate cancer [abstract]. Ann. Oncol. 23 (Suppl. 9), ix303, a920P (2012).

    Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  135. Sadar, M. D. Small molecule inhibitors targeting the ''achilles' heel'' of androgen receptor activity. Cancer Res. 71, 1208–1213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Andersen, R. J. et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17, 535–546 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Loddick, S. A. et al. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo. Mol. Cancer Ther. 9, 1715–1727 (2013).

    Article  CAS  Google Scholar 

  138. Omlin, A. G. et al. A first-in-human study of the oral selective androgen receptor down-regulating drug (SARD) AZD3514 in patients with castration-resistant prostate cancer (CRPC) [abstract]. J. Clin. Oncol. 31 (Suppl.), a4511 (2013).

    Google Scholar 

  139. Gleave, M. E. & Monia, B. P. Antisense therapy for cancer. Nat. Rev. Cancer 5, 468–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, Y. et al. Reduced expression of the androgen receptor by third generation of antisense shows antitumor activity in models of prostate cancer. Mol. Cancer Ther. 10, 2309–2319 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Bianchini, D. et al. First-in-human phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide (LNA-ASO) to androgen receptor (AR) mRNA in patients with castration-resistant prostate cancer (CRPC). Br. J. Cancer 109, 2579–2586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Massard, C. et al. ARADES trial: A first-in-man, open-label, phase I/II safety, pharmacokinetic, and proof-of-concept study of ODM-201 in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) [abstract]. Ann. Oncol. 23 (Suppl. 9), ixe16, LBA25_PR (2012).

    Google Scholar 

  143. Fizazi, K. et al. An open-label, phase I/II safety, pharmacokinetic, and proof-of concept study of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (CRPC) [abstract]. Eur. J. Cancer 49 (Suppl. 2), a2853 (2013).

    Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov[online] (2014).

  145. US National Library of Medicine. ClinicalTrials.gov[online] (2014).

  146. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  147. Mezynski, J. et al. Antitumour activity of docetaxel following treatment with the CYP17A1 inhibitor abiraterone: clinical evidence for cross-resistance? Ann. Oncol. 11, 2943–2947 (2012).

    Article  Google Scholar 

  148. Bianchini, D. et al. Antitumour activity of enzalutamide (MDV3100) in patients with metastatic castration-resistant prostate cancer (CRPC) pre-treated with docetaxel and abiraterone. Eur. J. Cancer 50, 78–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Schrader, A. J. et al. Enzalutamide in castration-resistant prostate cancer patients progressing after docetaxel and abiraterone. Eur. J. Cancer 65, 30–36 (2014).

    CAS  Google Scholar 

  150. Loriot, Y. et al. Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Ann. Oncol. 24, 1807–1812 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Noonan, K. L. et al. Clinical activity of abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after enzalutamide. Ann. Oncol. 24, 1802–1807 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Li, Y. et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 73, 483–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sahu, B. et al. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res. 73, 1570–1580 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Richards, J. et al. Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72, 2176–2182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Darshan, M. S. et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 71, 6019–6029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhu, M. L. et al. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 70, 7992–8002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gravis, G. et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 14, 149–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. ECOG-ACRIN Cancer Research Group Press Release. ECOG-ACRIN Cancer Research Group [online], (2013).

  160. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  161. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  162. Barbieri, C. E. et al. The mutational landscape of prostate cancer. Eur. Urol. 64, 567–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lorente, D. & De Bono, J. S. Molecular alterations and emerging targets in castration resistant prostate cancer. Eur. J. Cancer 50, 753–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  166. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  167. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  168. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  169. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  170. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  171. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  172. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  173. Miller, G. M. & Hinman, F. Jr. Cortisone treatment in advanced carcinoma of the prostate. J. Urol. 72, 485–496 (1954).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.N.S.W. researched data for the article. Y.N.S.W. and R.F. made a substantial contribution to discussion of the content. Y.N.S.W., R.F. and J.d.B. wrote the article and all authors reviewed and edited the article prior to submission.

Corresponding author

Correspondence to Johann de Bono.

Ethics declarations

Competing interests

All authors are employees of The Institute of Cancer Research, which has a commercial interest in abiraterone acetate. J.d.B. has served as a paid consultant for Astellas Pharma Inc., Janssen Biotech, Medivation and Sanofi.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, Y., Ferraldeschi, R., Attard, G. et al. Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nat Rev Clin Oncol 11, 365–376 (2014). https://doi.org/10.1038/nrclinonc.2014.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing