Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer Systems Biology: a peek into the future of patient care?

Key Points

  • Systems biology can help to increase therapy efficacy turning effects of targeted therapies into durable responses

  • Integration of multiple omics data provides the information about genomic and epigenetic aberrations in cancer cells that can be targeted in cancer therapy

  • Integration of computational and mathematical models with patient and lab-based data can help identify and target novel emergent strategies

  • The use of systems biology approaches can have a clinical effect in the future of personalized cancer therapy

Abstract

Traditionally, scientific research has focused on studying individual events, such as single mutations, gene function, or the effect that mutating one protein has on a biological phenotype. A range of technologies is beginning to provide information that will enable a holistic view of how genomic and epigenetic aberrations in cancer cells can alter the homeostasis of signalling networks within these cells, between cancer cells and the local microenvironment, and at the organ and organism level. This process, termed Systems Biology, needs to be integrated with an iterative approach wherein hypotheses and predictions that arise from modelling are refined and constrained by experimental evaluation. Systems biology approaches will be vital for developing and implementing effective strategies to deliver personalized cancer therapy. Specifically, these approaches will be important to select those patients who are most likely to benefit from targeted therapies and for the development and implementation of rational combinatorial therapies. Systems biology can help to increase therapy efficacy or bypass the emergence of resistance, thus converting the current—often short term—effects of targeted therapies into durable responses, ultimately to improve patient quality of life and provide a cure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Application of cancer systems biology to decipher complex interactions in multiple dimensions.
Figure 2: Integrating tumour molecular characteristics with pharmacogenomics for precision therapy.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  3. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  4. Gentles, A. J. & Gallahan, D. Systems biology: confronting the complexity of cancer. Cancer Res. 71, 5961–5964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berns, K. & Bernards, R. Understanding resistance to targeted cancer drugs through loss of function genetic screens. Drug Resist. Updat. 15, 268–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. National Cancer Institute. The Cancer Genome Atlas [online].

  9. International Cancer Genome Consortium [online].

  10. Lefebvre, C., Rieckhof, G. & Califano, A. Reverse-engineering human regulatory networks. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 311–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, S. S. et al. Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput. Biol. 9, e1002887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iadevaia, S., Lu, Y., Morales, F. C., Mills, G. B. & Ram, P. T. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 70, 6704–6714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pascal, J. et al. Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements. Proc. Natl Acad. Sci. USA 110, 14266–14271 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Swanson, K. R. et al. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 71, 7366–7375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dedes, K. J., Wetterskog, D., Ashworth, A., Kaye, S. B. & Reis-Filho, J. S. Emerging therapeutic targets in endometrial cancer. Nat. Rev. Clin. Oncol. 8, 261–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Gore, M. E. & Larkin, J. M. Challenges and opportunities for converting renal cell carcinoma into a chronic disease with targeted therapies. Br. J. Cancer 104, 399–406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diaz, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Janku, F. et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol. 30, 777–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  21. Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

  22. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hennessy, B. T. et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin. Proteomics 6, 129–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  25. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  26. Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hill, S. M. et al. Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28, 2804–2810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pritchard, J. R. et al. Defining principles of combination drug mechanisms of action. Proc. Natl Acad. Sci. USA 110, E170–E179 (2013).

    Article  PubMed  Google Scholar 

  31. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sumazin, P. et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tentner, A. R. et al. Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol. Syst. Biol. 8, 568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mills, G. B. An emerging toolkit for targeted cancer therapies. Genome Res. 22, 177–182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chin, L., Hahn, W. C., Getz, G. & Meyerson, M. Making sense of cancer genomic data. Genes Dev. 25, 534–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Derry, J. M. et al. Developing predictive molecular maps of human disease through community-based modeling. Nat. Genet. 44, 127–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Norman, T. C., Bountra, C., Edwards, A. M., Yamamoto, K. R. & Friend, S. H. Leveraging crowdsourcing to facilitate the discovery of new medicines. Sci. Transl. Med. 3, 88mr1 (2011).

    PubMed  Google Scholar 

  40. Bordbar, A. et al. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Liang, H. et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 22, 2120–2129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Drabsch, Y. & ten Dijke, P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31, 553–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Tian, M., Neil, J. R. & Schiemann, W. P. Transforming growth factor-β and the hallmarks of cancer. Cell Signal. 23, 951–962 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Swartz, M. A. et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 72, 2473–2480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lander, A. D. et al. What does the concept of the stem cell niche really mean today? BMC Biol. 10, 19 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Park, E. S. et al. Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proc. Natl Acad. Sci. USA 108, 17456–17461 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Puigvert, J. C. et al. Cross-talk between integrins and oncogenes modulates chemosensitivity. Mol. Pharmacol. 75, 947–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Storch, K. et al. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res. 70, 3925–3934 (2010).

    Article  PubMed  Google Scholar 

  51. Zschenker, O., Streichert, T., Hehlgans, S. & Cordes, N. Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS ONE 7, e34279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Albeck, J. G., Mills, G. B. & Brugge, J. S. Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol. Cell 49, 249–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Kenny, H. A., Krausz, T., Yamada, S. D. & Lengyel, E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int. J. Cancer 121, 1463–1472 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kenny, P. A. et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1, 84–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rejniak, K. A. et al. Linking changes in epithelial morphogenesis to cancer mutations using computational modeling. PLoS Comput. Biol. 6, e1000900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kristensen, V. N. et al. Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. Proc. Natl Acad. Sci. USA 109, 2802–2807 (2012).

    Article  PubMed  Google Scholar 

  58. Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Enderling, H., Hlatky, L. & Hahnfeldt, P. Cancer stem cells: a minor cancer subpopulation that redefines global cancer features. Front. Oncol. 3, 76 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Frieboes, H. B. et al. An integrated computational/experimental model of lymphoma growth. PLoS Comput. Biol. e1003008 (2013).

  61. Enderling, H. et al. Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69, 8814–8821 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Andasari, V., Gerisch, A., Lolas, G., South, A. P. & Chaplain, M. A. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63, 141–171 (2011).

    Article  PubMed  Google Scholar 

  63. Haeno, H. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 148, 362–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, M., Gillies, R. J. & Rejniak, K. A. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3, 278 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. Eyler, C. E. & Rich, J. N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol. 26, 2839–2845 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Biddle, A. et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71, 5317–5326 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Z. A. et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lander, A. D., Gokoffski, K. K., Wan, F. Y., Nie, Q. & Calof, A. L. Cell lineages and the logic of proliferative control. PLoS Biol. 7, e15 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, L., Lander, A. D. & Nie, Q. A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. BMC Syst. Biol. 6, 93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Youssefpour, H., Li, X., Lander, A. D. & Lowengrub, J. S. Multispecies model of cell lineages and feedback control in solid tumors. J. Theor. Biol. 304, 39–59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tyson, D. R., Garbett, S. P., Frick, P. L. & Quaranta, V. Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nat. Methods 9, 923–928 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yankeelov, T. E. et al. Clinically relevant modeling of tumor growth and treatment response. Sci. Transl. Med. 5, 187ps9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, J. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nelander, S. et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol. 4, 216 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Saez-Rodriguez, J. et al. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 71, 5400–5411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alexopoulos, L. G., Saez-Rodriguez, J., Cosgrove, B. D., Lauffenburger, D. A. & Sorger, P. K. Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol. Cell. Proteomics 9, 1849–1865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bussey, K. J. et al. Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol. Cancer Ther. 5, 853–867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heiser, L. M. et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol. 10, R31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Heiser, L. M. et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc. Natl Acad. Sci. USA 109, 2724–2729 (2012).

    Article  PubMed  Google Scholar 

  86. Kim, N. et al. Systematic analysis of genotype-specific drug responses in cancer. Int. J. Cancer 131, 2456–2464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tabchy, A., Eltonsy, N., Housman, D. E. & Mills, G. B. Systematic identification of combinatorial drivers and targets in cancer cell lines. PLoS ONE 8, e60339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Banko, M. R. et al. Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 44, 878–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiang, H., Pritchard, J. R., Williams, R. T., Lauffenburger, D. A. & Hemann, M. T. A mammalian functional-genetic approach to characterizing cancer therapeutics. Nat. Chem. Biol. 7, 92–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Lu, Y. et al. Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 30, 4567–4577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wagner, J. P. et al. Receptor tyrosine kinases fall into distinct classes based on their inferred signaling networks. Sci. Signal. 6, ra58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Komurov, K. et al. The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol. Syst. Biol. 8, 596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beckman, R. A., Schemmann, G. S. & Yeang, C. H. Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer. Proc. Natl Acad. Sci. USA 109, 14586–14591 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lunardi, A. et al. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat. Genet. 45, 747–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, M. J. et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149, 780–794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, R. L., Xie, L., Xie, L., Bourne, P. E. & Palsson, B. O. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput. Biol. 6, e1000938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bisikirska, B. C. et al. STK38 is a critical upstream regulator of MYC's oncogenic activity in human B-cell lymphoma. Oncogene 32, 5283–5291 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Schoeberl, B. et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal. 2, ra31 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. McDonagh, C. F. et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol. Cancer Ther. 11, 582–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Kirouac, D. C. et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci. Signal. 6, ra68 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Bilal, E. et al. Improving breast cancer survival analysis through competition-based multidimensional modeling. PLoS Comput. Biol. 9, e1003047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. The Dream Project [online].

  105. Shi, L. et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 28, 827–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Margolin, A. A. et al. Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Sci. Transl. Med. 5, 181re1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIHU54CA112970.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article, contributed substantially to discussion of content, wrote, and reviewed and edited the manuscript before submission and following the peer-reviewer process.

Corresponding author

Correspondence to Gordon B. Mills.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, H., Mills, G. & Ram, P. Cancer Systems Biology: a peek into the future of patient care?. Nat Rev Clin Oncol 11, 167–176 (2014). https://doi.org/10.1038/nrclinonc.2014.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer