Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current approaches to the treatment of metastatic brain tumours

This article has been updated

Key Points

  • An increased understanding of the molecular biology of metastatic processes, including cell migration, blood–brain barrier penetration, angiogenesis and tumour proliferation, is providing new opportunities for the development of targeted therapies

  • Advances in MRI, incorporating spectroscopy and perfusion techniques, and tracers unique to metastases, provide additional information on responses to treatment and enable the earlier detection of new tumours

  • Improvements in intraoperative tumour identification using MRI and fluorescent agents maximize the likelihood of complete tumour resection and minimize injury to normal tissue

  • Reduction of radiation-induced cerebral injury and cognitive decline through repeated use of stereotactic radiosurgery or hippocampal-avoidance whole-brain radiotherapy provide useful options for individuals with advanced cerebral metastatic disease

  • Targeted therapy is beneficial in molecularly-selected tumours, including erlotinib in EGFR-mutant lung tumours, crizotinib in lung carcinomas with EML4ALK translocations, trastuzumab in HER2+ breast cancer and dabrafenib in BRAF-mutant melanoma

Abstract

Metastatic tumours involving the brain overshadow primary brain neoplasms in frequency and are an important complication in the overall management of many cancers. Importantly, advances are being made in understanding the molecular biology underlying the initial development and eventual proliferation of brain metastases. Surgery and radiation remain the cornerstones of the therapy for symptomatic lesions; however, image-based guidance is improving surgical technique to maximize the preservation of normal tissue, while more sophisticated approaches to radiation therapy are being used to minimize the long-standing concerns over the toxicity of whole-brain radiation protocols used in the past. Furthermore, the burgeoning knowledge of tumour biology has facilitated the entry of systemically administered therapies into the clinic. Responses to these targeted interventions have ranged from substantial toxicity with no control of disease to periods of useful tumour control with no decrement in performance status of the treated individual. This experience enables recognition of the limits of targeted therapy, but has also informed methods to optimize this approach. This Review focuses on the clinically relevant molecular biology of brain metastases, and summarizes the current applications of these data to imaging, surgery, radiation therapy, cytotoxic chemotherapy and targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The key molecular alterations in the primary cancers that most commonly metastasize to the brain.

Similar content being viewed by others

Change history

  • 06 March 2014

    In the version of this article initially published online, details of Jack Arbiser’s primary affiliation were omitted from the correspondence section, and should have included 'Atlanta Veterans Administration Medical Center'. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. US Census Bureau. Census.gov [online], (2010).

  2. Fox, B. D., Cheung, V. J., Patel, A. J., Suki, D. & Rao, G. Epidemiology of metastatic brain tumors. Neurosurg. Clin. N. Am. 22, 1–6 (2011).

    Article  PubMed  Google Scholar 

  3. Smedby, K. E., Brandt, L., Backlund, M. L. & Blomqvist, P. Brain metastases admissions in Sweden between 1987 and 2006. Br. J. Cancer 101, 1919–1924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nieder, C., Spanne, O., Mehta, M. P., Grosu, A. L. & Geinitz, H. Presentation, patterns of care, and survival in patients with brain metastases: what has changed in the last 20 years? Cancer 117, 2505–2512 (2011).

    Article  PubMed  Google Scholar 

  5. Schouten, L. J., Rutten, J., Huveneers, H. A. & Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94, 2698–2705 (2002).

    Article  PubMed  Google Scholar 

  6. Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 22, 2865–2872 (2004).

    Article  PubMed  Google Scholar 

  7. Tabouret, E. et al. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 32, 4655–4662 (2012).

    PubMed  Google Scholar 

  8. Posner, J. B. & Chernik, N. L. Intracranial metastases from systemic cancer. Adv. Neurol. 19, 579–592 (1978).

    CAS  PubMed  Google Scholar 

  9. Percy, A. K. Neoplasms of the central nervous system: epidemiologic considerations. Neurology 20, 398–399 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. Pickren, J. W., Lopez, G., Tsukada, Y. & Lane, W. W. Brain metastases: an autopsy study. Cancer Treat. Symp. 2, 295–313 (1983).

    Google Scholar 

  11. Tsukada, Y., Fouad, A., Pickren, J. W. & Lane, W. W. Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 52, 2349–2354 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. National Cancer institute. Seer.cancer.gov [online], (2013).

  13. CDC. Decline in Breast Cancer Incidence—United States, 1999–2003. MMWR Morb. Mortal. Wkly Rep. 56, 549–553 (2007).

  14. CDC Press release. Rates of new lung cancer cases drop in U. S. men and women [online], (2014).

  15. Stemmler, H. J. et al. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs 18, 23–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Pestalozzi, B. C., Brignoli, S. Trastuzumab in CSF. J. Clin. Oncol. 18, 2349–2351 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Wen, P. Y. & Loeffler, J. S. Management of brain metastases. Oncol. (Williston Park) 13, 941–954, 957–961; discussion 961–962, 9 (1999).

    CAS  Google Scholar 

  18. American Cancer Society. Cancer Facts & Figures 2013 [online], (2013).

  19. Eichler, A. F. et al. The biology of brain metastases—translation to new therapies. Nat. Rev. Clin. Oncol. 8, 344–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fidler, I. J., Balasubramanian, K., Lin, Q., Kim, S. W. & Kim, S. J. The brain microenvironment and cancer metastasis. Mol. Cells 30, 93–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Park, E. S. et al. Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proc. Natl Acad. Sci. USA 108, 17456–17461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, S. J. et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13, 286–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368–4380 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Rampling, R. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 29, 427–431 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  28. Batchelor, T. T. et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 28, 2817–2823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kodack, D. P. et al. Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc. Natl Acad. Sci. USA 109, E3119–E3127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pivot, X., Bedairia, N., Thiery-Vuillemin, A., Espie, M. & Marty, M. Combining molecular targeted therapies: clinical experience. Anticancer Drugs 22, 701–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 5, 180ra48 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sijens, P. E. et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn. Reson. Med. 33 818–826 (2005).

    Article  Google Scholar 

  34. Kelly, P. J. et al. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin. Proc. 62, 450–459 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Law, M. et al. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222, 715–721 (2002).

    Article  PubMed  Google Scholar 

  36. Cha, S. Neuroimaging in neuro-oncology. Neurotherapeutics 6, 465–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Connell, J. J. et al. Selective permeablization of the blood–brain barrier at sites of metastasis. J. Natl Cancer Inst. 105, 1634–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serres, S. et al. Molecular MRI enables early and sensitive detection of brain metastases. Proc. Natl Acad. Sci. USA 109, 6674–6679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalkanis, S. N. et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J. Neurooncol. 96, 33–43 (2010).

    Article  PubMed  Google Scholar 

  40. Patchell, R. A. et al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 322, 494–500 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Vecht, C. J. et al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann. Neurol. 33, 583–590 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Katz, H. R. The relative effectiveness of radiation therapy, corticosteroids and surgery in the management of melanoma metastatic to the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 7, 897–906 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. Bindal, R. K., Sawaya, R., Leavens, M. E. & Lee, J. J. Surgical treatment of multiple brain metastases. J. Neurosurg. 79, 210–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Bindal, R. K., Sawaya, R., Leavens, M. E., Hess, K. R. & Taylor, S. H. Reoperation for recurrent metastatic brain tumors. J. Neurosurg. 83, 600–604 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Al-Zabin, M., Ullrich, W. O., Brawanski, A. & Proescholdt, M. A. Recurrent brain metastases from lung cancer: the impact of reoperation. Acta Neurochir. (Wien) 152, 1887–1892 (2010).

    Article  Google Scholar 

  46. Hatiboglu, M. A., Wildrick, D. M. & Sawaya, R. The role of surgical resection in patients with brain metastases. Ecancermedicalscience 7, 308 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Iwadate, Y., Namba, H. & Yamaura, A. Significance of surgical resection for the treatment of multiple brain metastases. Anticancer Res. 20, 573–577 (2000).

    CAS  PubMed  Google Scholar 

  48. Andrews, D. W. et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363, 1665–1672 (2004).

    Article  PubMed  Google Scholar 

  49. Kondziolka, D., Patel, A., Lunsford, L. D., Kassam, A. & Flickinger, J. C. Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 45, 427–434 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  51. McGirt, M. J. et al. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65, 463–469 (2009).

    Article  PubMed  Google Scholar 

  52. Gulati, S. et al. The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg. 76, 572–579 (2011).

    Article  PubMed  Google Scholar 

  53. Youmans, J. R. & Winn, R. H. (eds) Youmans Neurological Surgery. (Saunders/Elsevier, 2011).

    Google Scholar 

  54. Garber, S. T. & Jensen, R. L. Image guidance for brain metastases resection. Surg. Neurol. Int. 3, S111–S117 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Sills, A. K. Current treatment approaches to surgery for brain metastases. Neurosurgery 57, S24–S32 (2005).

    Article  PubMed  Google Scholar 

  56. Levitt, M. R., Levitt, R. & Silbergeld, D. L. Controversies in the management of brain metastases. Surg. Neurol. Int. 4, S231–S235 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Narang, J. et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro. Oncol. 13, 1037–1046 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Eyüpoglu, I. Y., Buchfelder, M. & Savaskan, N. E. Surgical resection of malignant gliomas—role in optimizing patient outcome. Nat. Rev. Neurol. 9, 141–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Kellogg, R. G. & Munoz, L. F. Selective excision of cerebral metastases from the precentral gyrus. Surg. Neurol. Int. 4, 66 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Weil, R. J. & Lonser, R. R. Selective excision of metastatic brain tumors originating in the motor cortex with preservation of function. J. Clin. Oncol. 23, 1209–1217 (2005).

    Article  PubMed  Google Scholar 

  61. Walter, J., Kuhn, S. A., Waschke, A., Kalff, R. & Ewald, C. Operative treatment of subcortical metastatic tumours in the central region. J. Neurooncol. 103, 567–573 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Orringer, D. A., Golby, A. & Jolesz, F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev. Med. Devices 9, 491–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schackert, G., Steinmetz, A., Meier, U. & Sobottka, S. B. Surgical management of single and multiple brain metastases: results of a retrospective study. Onkologie 24, 246–255 (2001).

    CAS  PubMed  Google Scholar 

  64. Nimsky, C., Ganslandt, O., Tomandl, B., Buchfelder, M. & Fahlbusch, R. Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur. Radiol. 12, 2690–2703 (2002).

    PubMed  Google Scholar 

  65. Kubben, P. L. et al. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 12, 1062–1070 (2011).

    Article  PubMed  Google Scholar 

  66. Martirosyan, N. L. et al. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J. Neurosurg. 115, 1131–1138 (2011).

    Article  PubMed  Google Scholar 

  67. Sanai, N. et al. Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery 68, 282–290 (2011).

    PubMed  Google Scholar 

  68. Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kalkanis, S. N. et al. Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J. Neurooncol. http://dx.doi.org/10.1007/s11060-013-1326-9.

  70. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  71. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  72. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  73. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  74. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  75. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  76. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  77. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  78. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  79. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  80. Sahgal, A., Soliman, H. & Larson, D. A. Whole-brain radiation therapy of brain metastasis. Prog. Neurol. Surg. 25, 82–95 (2012).

    Article  PubMed  Google Scholar 

  81. Gaspar, L. et al. Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 37, 745–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Kohler, B. A. et al. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J. Natl Cancer Inst. 103, 714–736 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li, J. et al. Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int. J. Radiat. Oncol. Biol. Phys. 71, 64–70 (2008).

    Article  PubMed  Google Scholar 

  84. DeAngelis, L. M., Delattre, J. Y. & Posner, J. B. Radiation-induced dementia in patients cured of brain metastases. Neurology 39, 789–796 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Welzel, G. Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 73, 919–926 (2009).

    Article  PubMed  Google Scholar 

  86. Borgelt, B. et al. The palliation of brain metastases: final results of the first two studies by the radiation therapy oncology group. Int. J. Radiat. Oncol. Biol. Phys. 6, 1–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Murray, K. J. et al. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the Radiation Therapy Oncology Group (RTOG) 9104. Int. J. Radiat. Oncol. Biol. Phys. 39, 571–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Noordijk, E. M. et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int. J. Radiat. Oncol. Biol. Phys. 29, 711–717 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Addeo, R. et al. Phase 2 trial of temozolomide using protracted low-dose and whole-brain radiotherapy for nonsmall cell lung cancer and breast cancer patients with brain metastases. Cancer 113, 2524–2531 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Chua, D. et al. Whole-brain radiation therapy plus concomitant temozolomide for the treatment of brain metastases from non-small-cell lung cancer: a randomized, open-label phase II study. Clin. Lung Cancer 11, 176–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Kouvaris, J. R. et al. Phase II study of temozolomide and concomitant whole-brain radiotherapy in patients with brain metastases from solid tumors. Onkologie 30, 361–366 (2007).

    CAS  PubMed  Google Scholar 

  92. Verger, E. et al. Temozolomide and concomitant whole-brain radiotherapy in patients with brain metastases: a phase II randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 61, 185–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Welsh, J. W. et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J. Clin. Oncol. 31, 895–902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sperduto, P. W. et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320. Int. J. Radiat. Oncol. Biol. Phys. 85, 1312–1318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aoyama, H. et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295, 2483–2491 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Sneed, P. K. et al. Radiosurgery for brain metastases: is whole brain radiotherapy necessary? Int. J. Radiat. Oncol. Biol. Phys. 43, 549–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Sneed, P. K. et al. A multi-institutional review of radiosurgery alone vs. radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 53, 519–526 (2002).

    Article  PubMed  Google Scholar 

  98. Chang, E. L. et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037–1044 (2009).

    Article  PubMed  Google Scholar 

  99. Tsao, M., Xu, W. & Sahgal, A. A meta-analysis evaluating stereotactic radiosurgery, whole-brain radiotherapy, or both for patients presenting with a limited number of brain metastases. Cancer 118, 2486–2493 (2012).

    Article  PubMed  Google Scholar 

  100. Aoyama, H. et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int. J. Radiat. Oncol. Biol. Phys. 68, 1388–1395 (2007).

    Article  PubMed  Google Scholar 

  101. Kocher, M. et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J. Clin. Oncol. 29, 134–141 (2011).

    Article  PubMed  Google Scholar 

  102. Soffietti, R. et al. A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J. Clin. Oncol. 31, 65–72 (2013).

    Article  PubMed  Google Scholar 

  103. Sahgal, A. et al. Individual patient data meta-analysis of randomized controlled trials comparing stereotactic radiosurgery alone to SRS plus whole brain radiation therapy in patients with brain metastasis. Int. J. Radiat. Oncol. Biol. Phys. 87, 1187 (2013).

    Article  Google Scholar 

  104. Barani, I. J., Larson, D. A. & Berger, M. S. Future directions in treatment of brain metastases. Surg. Neurol. Int. 4 (Suppl. 4), S220–S230 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Slotman, B. et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N. Engl. J. Med. 357, 664–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Gore, E. M. et al. Phase III comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non-small-cell lung cancer: primary analysis of Radiation Therapy Oncology Group Study RTOG 0214. J. Clin. Oncol. 29, 272–278 (2011).

    Article  PubMed  Google Scholar 

  107. Sun, A. et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J. Clin. Oncol. 29, 279–286 (2011).

    Article  PubMed  Google Scholar 

  108. Brown, P. D. et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 15, 1429–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gondi, V. et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 78, 1244–1252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gutierrez, A. N. et al. Whole-brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int. J. Radiat. Oncol. Biol. Phys. 69, 589–597 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gondi, V. et al. Memory preservation with conformal avoidance of the hippocampus during whole-brain radiotherapy (WBRT) for patients with brain metastases: primary endpoint results of RTOG 0933. Int. J. Radiat. Oncol. Biol. Phys. 87, 1186 (2013).

    Article  Google Scholar 

  112. Hall, W. A., Djalilian, H. R., Nussbaum, E. S. & Cho, K. H. Long-term survival with metastatic cancer to the brain. Med. Oncol. 17, 279–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Maclean, J. et al. Multi-disciplinary management for patients with oligometastases to the brain: results of a 5 year cohort study. Radiat. Oncol. 8, 156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gril, B. et al. Pazopanib reveals a role for tumor cell B-Raf in the prevention of HER2+ breast cancer brain metastasis. Clin. Cancer Res. 17, 142–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Palmieri, D. et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res. 7, 1438–1445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shaw, A. T. et al. Clinical activity of the ALK inhibitor LDK378 in advanced, ALK-positive NSCLC [abstract]. J. Clin. Oncol. 31 (Suppl.), abstract 8010 (2013).

    Google Scholar 

  117. Fukuoka, M. et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol. 29, 2866–2874 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Kallioniemi, O. P. et al. Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int. J. Cancer 49, 650–655 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Nie, F. et al. Involvement of epidermal growth factor receptor overexpression in the promotion of breast cancer brain metastasis. Cancer 118, 5198–5209 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Gril, B. et al. Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur. J. Cancer 46, 1204–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rahmathulla, G., Toms, S. A. & Weil, R. J. The molecular biology of brain metastasis. J. Oncol. 2012, 723541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun, M. et al. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin. Cancer Res. 15, 4829–4837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Benedettini, E. et al. Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. Am. J. Pathol. 177, 415–423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Breindel, J. L. et al. EGF receptor activates MET through MAPK to enhance non-small cell lung carcinoma invasion and brain metastasis. Cancer Res. 73, 5053–5065 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, B. et al. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene 32, 2952–2962 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Nguyen, D. X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grinberg-Rashi, H. et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin. Cancer Res. 15, 1755–1761 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Wu, P. F. et al. Phosphorylated insulin-like growth factor-1 receptor (pIGF1R) is a poor prognostic factor in brain metastases from lung adenocarcinomas. J. Neurooncol. 115, 61–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, G., Wang, Z., Liu, X. Y. & Liu, F. Y. High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J. Surg. 35, 56–61 (2011).

    Article  PubMed  Google Scholar 

  132. Yoshimasu, T. et al. Increased expression of integrin alpha3beta1 in highly brain metastatic subclone of a human non-small cell lung cancer cell line. Cancer Sci. 95, 142–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Shintani, Y. et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res. 64, 4190–4196 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Minotti, V. et al. Chemotherapy with cisplatin and teniposide for cerebral metastases in non-small cell lung cancer. Lung Cancer 20, 93–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Kelly, K. & Bunn, P. A. Jr. Is it time to reevaluate our approach to the treatment of brain metastases in patients with non-small cell lung cancer? Lung Cancer 20, 85–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Pietanza, M. C. et al. Phase II trial of temozolomide in patients with relapsed sensitive or refractory small cell lung cancer, with assessment of methylguanine-DNA methyltransferase as a potential biomarker. Clin. Cancer Res. 18, 1138–1145 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Cortes, J. et al. Front-line paclitaxel/cisplatin-based chemotherapy in brain metastases from non-small-cell lung cancer. Oncology 64, 28–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Bernardo, G. et al. First-line chemotherapy with vinorelbine, gemcitabine, and carboplatin in the treatment of brain metastases from non-small-cell lung cancer: a phase II study. Cancer Invest. 20, 293–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Robinet, G. et al. Results of a phase III study of early versus delayed whole brain radiotherapy with concurrent cisplatin and vinorelbine combination in inoperable brain metastasis of non-small-cell lung cancer: Groupe Francais de Pneumo-Cancerologie (GFPC) Protocol 95–1. Ann. Oncol. 12, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Heimberger, A. B. et al. Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (Iressa). Clin. Cancer Res. 8, 3496–3502 (2002).

    CAS  PubMed  Google Scholar 

  141. Lai, C. S., Boshoff, C., Falzon, M. & Lee, S. M. Complete response to erlotinib treatment in brain metastases from recurrent NSCLC. Thorax 61, 91 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yap, T. A. et al. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J. Clin. Oncol. 28, 3965–3972 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Kuiper, J. L. & Smit, E. F. High-dose, pulsatile erlotinib in two NSCLC patients with leptomeningeal metastases—one with a remarkable thoracic response as well. Lung Cancer 80, 102–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Grommes, C. et al. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 13, 1364–1369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Katayama, T. et al. Efficacy of erlotinib for brain and leptomeningeal metastases in patients with lung adenocarcinoma who showed initial good response to gefitinib. J. Thorac. Oncol. 4, 1415–1419 (2009).

    Article  PubMed  Google Scholar 

  146. Heon, S. et al. The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clin. Cancer Res. 18, 4406–4414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Doebele, R. C. et al. Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer 118, 4502–4511 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Camidge, D. R. et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 13, 1011–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Camidge, D. R. et al. Updated results of a first-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies [abstract 3401]. Presented at the European Cancer Congress, 2013 (2013).

  151. Solomon, B., Wilner, K. D. & Shaw, A. T. Current status of targeted therapy for anaplastic lymphoma kinase-rearranged non-small cell lung cancer. Clin. Pharmacol. Ther. 95, 15–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Costa, D. B. et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 20, e443–e445 (2011).

    Article  Google Scholar 

  153. Tang, S. C. et al. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int. J. Cancer 134, 1484–1494 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Kinoshita, Y., Koga, Y., Sakamoto, A. & Hidaka, K. Long-lasting response to crizotinib in brain metastases due to EML4-ALK-rearranged non-small-cell lung cancer. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2013-200867.

  155. Kim, Y. H. et al. High-dose crizotinib for brain metastases refractory to standard-dose crizotinib. J. Thor. Oncol. 8, e85–e86 (2013).

    Article  Google Scholar 

  156. Gandhi, L., Drappatz, J., Ramaiya, N. H. & Otterson, G. A. High-dose pemetrexed in combination with high-dose crizotinib for the treatment of refractory CNS metastases in ALK-rearranged non-small-cell lung cancer. J. Thorac. Oncol. 8, e3–e5 (2013).

    Article  PubMed  Google Scholar 

  157. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Guiu, S. et al. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann. Oncol. 23, 2997–3006 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Heitz, F. et al. Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur. J. Cancer 45, 2792–2798 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Dawood, S. et al. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer. Cancer 118, 4652–4659 (2012).

    Article  PubMed  Google Scholar 

  162. Fokstuen, T. et al. Radiation therapy in the management of brain metastases from breast cancer. Breast Cancer Res. Treat. 62, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Anders, C. K. et al. The prognostic contribution of clinical breast cancer subtype, age, and race among patients with breast cancer brain metastases. Cancer 117, 1602–1611 (2011).

    Article  PubMed  Google Scholar 

  164. Niwinska, A., Murawska, M. & Pogoda, K. Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann. Oncol. 21, 942–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Melisko, M. E., Moore, D. H., Sneed, P. K., De Franco, J. & Rugo, H. S. Brain metastases in breast cancer: clinical and pathologic characteristics associated with improvements in survival. J. Neurooncol. 88, 359–365 (2008).

    Article  PubMed  Google Scholar 

  166. Amir, E. et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30, 587–592 (2012).

    Article  PubMed  Google Scholar 

  167. Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).

    Article  PubMed  Google Scholar 

  168. Sezgin, C., Gokmen, E., Esassolak, M., Ozdemir, N. & Goker, E. Risk factors for central nervous system metastasis in patients with metastatic breast cancer. Med. Oncol. 24, 155–161 (2007).

    Article  PubMed  Google Scholar 

  169. Ryberg, M. et al. Predictors of central nervous system metastasis in patients with metastatic breast cancer. A competing risk analysis of 579 patients treated with epirubicin-based chemotherapy. Breast Cancer Res. Treat. 91, 217–225 (2005).

    Article  PubMed  Google Scholar 

  170. Musolino, A. et al. Multifactorial central nervous system recurrence susceptibility in patients with HER2-positive breast cancer: epidemiological and clinical data from a population-based cancer registry study. Cancer 117, 1837–1846 (2011).

    Article  PubMed  Google Scholar 

  171. Pestalozzi, B. C. et al. Identifying breast cancer patients at risk for central nervous system (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann. Oncol. 17, 935–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Ray, P. S. et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 70, 3870–3876 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Lorger, M., Krueger, J. S., O'Neal, M., Staflin, K. & Felding-Habermann, B. Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain. Proc. Natl Acad. Sci. USA 106, 10666–10671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nam, D. H. I. Activation of notch signaling in a xenograft model of brain metastasis. Clin. Cancer Res. 14, 4059–4066 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, S. et al. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Res. 73, 5764–5774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Saldana, S. M. et al. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis. PLoS ONE 8, e73406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Palmieri, D. et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res. 15, 6148–6157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lee, Y. T. Breast carcinoma: pattern of metastasis at autopsy. J. Surg. Oncol. 23, 175–180 (1983).

    Article  CAS  PubMed  Google Scholar 

  179. Trudeau, M. E. et al. Temozolomide in metastatic breast cancer (MBC): a phase II trial of the National Cancer Institute of Canada—Clinical Trials Group (NCIC-CTG). Ann. Oncol. 17, 952–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Siena, S. et al. Dose-dense temozolomide regimen for the treatment of brain metastases from melanoma, breast cancer, or lung cancer not amenable to surgery or radiosurgery: a multicenter phase II study. Ann. Oncol. 21, 655–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Iwamoto, F. M. et al. A phase II trial of vinorelbine and intensive temozolomide for patients with recurrent or progressive brain metastases. J. Neurooncol. 87, 85–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Christodoulou, C. et al. Temozolomide (TMZ) combined with cisplatin (CDDP) in patients with brain metastases from solid tumors: a Hellenic Cooperative Oncology Group (HeCOG) phase II study. J. Neurooncol. 71, 61–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Ekenel, M., Hormigo, A. M., Peak, S., Deangelis, L. M. & Abrey, L. E. Capecitabine therapy of central nervous system metastases from breast cancer. J. Neurooncol. 85, 223–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Wang, M. L., Yung, W. K., Royce, M.E., Schomer, D. F. & Theriault, R. L. Capecitabine for 5-fluorouracil-resistant brain metastases from breast cancer. Am. J. Clin. Oncol. 24, 421–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Rivera, E. et al. Phase I study of capecitabine in combination with temozolomide in the treatment of patients with brain metastases from breast carcinoma. Cancer 107, 1348–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Lin, N. U. et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 26, 1993–1999 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Lin, N. U. et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 15, 1452–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Metro, G. et al. Clinical outcome of patients with brain metastases from HER2-positive breast cancer treated with lapatinib and capecitabine. Ann. Oncol. 22, 625–630 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Sutherland, S. et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases—the UK experience. Br. J. Cancer 102, 995–1002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lin, N. U. et al. Randomized phase II study of lapatinib plus capecitabine or lapatinib plus topotecan for patients with HER2-positive breast cancer brain metastases. J. Neurooncol. 105, 613–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Batchelor, T. et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 14, 64–71 (2013).

    Article  CAS  Google Scholar 

  192. Bourdeanu, L., Reilly, A. A. & Luu, T. CNS metastases in breast cancer: a comparison report [abstract P6-11-12]. Presented at the San Antonio Breast Cancer Symposium 2013.

  193. Fitzgerald, D. P. et al. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther. 11, 1959–1967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  195. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  196. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  197. Ro, J. et al. Clinical outcomes of HER2-positive metastatic breast cancer patients with brain metastasis treated with lapatinib and capecitabine: an open-label expanded access study in Korea. BMC Cancer 12, 322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yap, Y. S. et al. Brain metastases in Asian HER2-positive breast cancer patients: anti-HER2 treatments and their impact on survival. Br. J. Cancer 107, 1075–1082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  200. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  201. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Curran, M. P. Everolimus: in patients with subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Paediatr. Drugs 14, 51–60 (2012).

    Article  PubMed  Google Scholar 

  203. Bendell, J. C. et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 30, 282–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Mehta, M. P. et al. Phase I safety and pharmacokinetic (PK) study of veliparib in combination with whole brain radiation therapy (WBRT) in patients (pts) with brain metastases [abstract 2013]. Int. J. Radiat. Oncol. Biol. Phys. 84 (Suppl.), S269–S270 (2012).

    Article  Google Scholar 

  207. Byrne, T. N., Cascino, T. L. & Posner, J. B. Brain metastasis from melanoma. J. Neurooncol. 1, 313–317 (1983).

    Article  CAS  PubMed  Google Scholar 

  208. Davies, M. A. et al. Integrated molecular and clinical analysis of Akt activation in metastatic melanoma. Clin. Cancer Res. 15, 7538–7546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Govindarajan, B. et al. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J. Clin. Invest. 117, 719–729 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bonner, M. Y. & Arbiser, J. L. Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell. Mol. Life Sci. 69, 2435–2442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Boivin, B., Zhang, S., Arbiser, J. L., Zhang, Z. Y. & Tonks, N. K. A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc. Natl Acad. Sci. USA 105, 9959–9964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Munson, J. M. et al. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci. Transl. Med. 4, 127–136 (2012).

    Article  CAS  Google Scholar 

  213. Hamilton, R. et al. Pathologic and gene expression features of metastatic melanomas to the brain. Cancer 119, 2737–2746 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Arpaia, E. et al. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and ERK. Oncogene 31, 884–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  216. Arnold, S. M. et al. Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 in paired primary tumors and brain metastasis. Clin. Cancer Res. 5, 4028–4033 (1999).

    CAS  PubMed  Google Scholar 

  217. Kusters, B. et al. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma. Cancer Res. 63, 5408–5413 (2003).

    PubMed  Google Scholar 

  218. Kusters, B. et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 62, 341–345 (2002).

    CAS  PubMed  Google Scholar 

  219. Yano, S. et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 60, 4959–4967 (2000).

    CAS  PubMed  Google Scholar 

  220. Xie, T. X. et al. Activation of STAT3 in human melanoma promotes brain metastasis. Cancer Res. 66, 3188–3196 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Shaw, E. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int. J. Radiat. Oncol. Biol. Phys. 47, 291–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  222. Margolin, K. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 13, 459–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Kingsley, D. P. An interesting case of possible abscopal effect in malignant melanoma. Br. J. Radiol. 48, 863–866 (1975).

    Article  CAS  PubMed  Google Scholar 

  224. Stamell, E. F. et al. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85, 293–295 (2013).

    Article  PubMed  Google Scholar 

  225. Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 1893–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Long, G. V. et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 1087–1095 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Jang, S. & Atkins, M. B. Which drug, and when, for patients with BRAF-mutant melanoma? Lancet Oncol. 14, e60–e69 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Okwan-Duodu, D., Pollack, B. P., Lawson, D. & Khan, M. K. Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am. J. Clin. Oncol. http://dx.doi.org/10.1097/COC.0b013e3182940dc3.

  229. Martinez, N., Boire, A. & Deangelis, L. M. Molecular interactions in the development of brain metastases. Int. J. Mol. Sci. 14, 17157–17167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  231. Ceresoli, G. L. et al. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann. Oncol. 15, 1042–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  232. Wu, C. et al. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 57, 359–364 (2007).

    Article  PubMed  Google Scholar 

  233. Kim, J. E. et al. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65, 351–354 (2009).

    Article  PubMed  Google Scholar 

  234. Hotta, K. et al. Effect of gefitinib ('Iressa', ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung Cancer 46, 255–261 (2004).

    Article  PubMed  Google Scholar 

  235. Porta, R. et al. Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur. Respir. J. 37, 624–631 (2011).

    Article  CAS  PubMed  Google Scholar 

  236. Atkins, M. B. et al. Temozolomide, thalidomide, and whole brain radiation therapy for patients with brain metastasis from metastatic melanoma: a phase II Cytokine Working Group study. Cancer 113, 2139–2145 (2008).

    Article  CAS  PubMed  Google Scholar 

  237. Konstantinou, M. P. et al. Ipilimumab in melanoma patients with brain metastasis: a retrospective multicentre evaluation of thirty-eight patients. Acta Derm. Venereol. 94, 45–49 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.K.O., J.A., A.Z., A.R. and M.K.M. researched the data for this article. T.K.O., J.A., A.Z., H.-K.G.S., A.M.R., S.N.K. and J.J.O. made substantial contributions to all other stages of the preparation of the manuscript for submission. In addition, T.R. and K.M.E. contributed substantially to discussion of content and the writing of the article. T.G.W., B.S., N.L.T. and M.K.M. also made considerable contributions to the writing of the article.

Corresponding author

Correspondence to Jeffrey J. Olson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owonikoko, T., Arbiser, J., Zelnak, A. et al. Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol 11, 203–222 (2014). https://doi.org/10.1038/nrclinonc.2014.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.25

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer