Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Quantitative multimodality imaging in cancer research and therapy

Abstract

Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET–CT and single-photon emission CT (SPECT–CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET–MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multimodality imaging in the diagnosis of metastasis in an 82-year-old woman with non-small-cell lung cancer.
Figure 2: A multiparametric MRI evaluation of patients with high-grade glioma before and after anti-VEGF-A antibody therapy with bevacizumab.
Figure 3: PET–MRI in the evaluation of treatment response in breast cancer.

Similar content being viewed by others

References

  1. Pisano, E. D. et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 353, 1773–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Yankeelov, T. E. & Gore, J. C. Dynamic-contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3, 91–107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ingrisch, M. & Sourbron, S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J. Pharmacokinet. Pharmacodyn. 40, 281–300 (2013).

    Article  PubMed  Google Scholar 

  5. Cosgrove, D. & Lassau, N. Imaging of perfusion using ultrasound. Eur. J. Nucl. Med. Mol. Imaging 37 (Suppl. 1), S65–S85 (2010).

    Article  PubMed  Google Scholar 

  6. Lewis, J. S. & Welch, M. J. PET imaging of hypoxia. Q. J. Nucl. Med. 45, 183–188 (2001).

    CAS  PubMed  Google Scholar 

  7. Kurihara, H., Honda, N., Kono, Y. & Arai, Y. Radiolabelled agents for PET imaging of tumor hypoxia. Curr. Med. Chem. 19, 3282–3289 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Yankeelov, T. E., Pickens, D. R. & Price, R. R. (eds) Quantitative MRI of Cancer 193–202 (CRC Press, 2012) [Series Ed. Hendee, W. R. Imaging in Medical Diagnosis and Therapy].

    Google Scholar 

  9. He, X. & Yablonskiy, D. A. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn. Reson. Med. 57, 115–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson, A. W. et al. Effects of cell volume fraction changes on apparent diffusion in human cells. Magn. Reson. Imaging 18, 689–695 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Tehrani, O. S. & Shields, A. F. PET imaging of proliferation with pyrimidines. J. Nucl. Med. 54, 903–912 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Czernin, J. in PET: Molecular Imaging and its Biological Implications (ed. Phelps, M. E.) 321–388 (Springer, New York, 2004).

    Book  Google Scholar 

  13. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Sundararajan, L., Linden, H. M., Link, J. M., Krohn, K. A. & Mankoff, D. A. 18F-Fluoroestradiol. Semin. Nucl. Med. 37, 470–476 (2007).

    Article  PubMed  Google Scholar 

  15. Meng, Q. & Li, Z. Molecular imaging probes for diagnosis and therapy evaluation of breast cancer. Int. J. Biomed. Imaging 2013, 230487 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Treglia, G. et al. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann. Nucl. Med. 26, 451–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Kuhl, D. E., Hale, J. & Eaton, W. L. Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87, 278–284 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. Liew, S. C. & Hasegawa, B. H. Noise, resolution, and sensitivity considerations in the design of a single-slice emission-transmission computed tomographic system. Med. Phys. 18, 1002–1015 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Lang, T. F. et al. Description of a prototype emission-transmission computed tomography imaging system. J. Nucl. Med. 33, 1881–1887 (1992).

    CAS  PubMed  Google Scholar 

  20. Kalki, K. et al. Myocardial perfusion imaging with a combined X-ray CT and SPECT system. J. Nucl. Med. 38, 1535–1540 (1997).

    CAS  PubMed  Google Scholar 

  21. Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

    CAS  PubMed  Google Scholar 

  22. Kinahan, P. E., Townsend, D. W., Beyer, T. & Sashin, D. Attenuation correction for a combined 3D PET/CT scanner. Med. Phys. 25, 2046–2053 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Poeppel, T. D., Krause, B. J., Heusner, T. A., Boy, C., Bockisch, A. & Antoch, G. PET/CT for the staging and follow-up of patients with malignancies. Eur. J. Radiol. 70, 382–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Antoch, G. et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229, 526–533 (2003).

    Article  PubMed  Google Scholar 

  25. Lardinois, D. et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N. Engl. J. Med. 348, 2500–2507 (2003).

    Article  PubMed  Google Scholar 

  26. Cohade, C., Osman, M., Leal, J. & Wahl, R. L. Direct comparison of 18F-FDG PET and PET/CT in patients with colorectal carcinoma. J. Nucl. Med. 44, 1797–1803 (2003).

    PubMed  Google Scholar 

  27. Schöder, H., Yeung, H. W., Gonen, M., Kraus, D. & Larson, S. M. Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. Radiology 231, 65–72 (2004).

    Article  PubMed  Google Scholar 

  28. Pfannenberg, A. C. et al. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur. J. Nucl. Med. Mol. Imaging 30, 835–843 (2003).

    Article  PubMed  Google Scholar 

  29. Even-Sapir, E., Keidar, Z. & Bar-Shalom, R. Hybrid imaging (SPECT/CT and PET/CT)--improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin. Nucl. Med. 39, 264–275 (2009).

    Article  PubMed  Google Scholar 

  30. Sauter, A. W., Wehrl, H. F., Kolb, A., Judenhofer, M. S. & Pichler, B. J. Combined PET/MRI: one step further in multimodality imaging. Trends Mol. Med. 16, 508–515 (2010).

    Article  PubMed  Google Scholar 

  31. Judenhofer, M. S. et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yankeelov, T. E. et al. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn. Reson. Imaging 30, 1342–1356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buchbender, C., Heusner, T. A., Lauenstein, T. C., Bockisch, A. & Antoch, G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J. Nucl. Med. 53, 928–938 (2012).

    Article  PubMed  Google Scholar 

  34. Huang, S. H. et al. A comparative study of fused FDG PET/MRI, PET/CT, MRI, and CT imaging for assessing surrounding tissue invasion of advanced buccal squamous cell carcinoma. Clin. Nucl. Med. 36, 518–525 (2011).

    Article  PubMed  Google Scholar 

  35. Tatsumi, M. et al. 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT. Int. J. Clin. Oncol. 16, 408–415 (2011).

    Article  PubMed  Google Scholar 

  36. Catalano, O. A. et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients—a hypothesis-generating exploratory study. Radiology 269, 857–869 (2013).

    Article  PubMed  Google Scholar 

  37. Borgwardt, L. et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J. Clin. Oncol. 23, 3030–3037 (2005).

    Article  PubMed  Google Scholar 

  38. Nagamachi, S. et al. The usefulness of 18F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with 18F-FDG PET/CT. Ann. Nucl. Med. 27, 554–563 (2013).

    Article  PubMed  Google Scholar 

  39. Pfluger, T. et al. Diagnostic value of combined 18F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur. J. Nucl. Med. Mol. Imaging 39, 1745–1755 (2012).

    Article  PubMed  Google Scholar 

  40. Walter, C. et al. Clinical and diagnostic value of preoperative MR mammography and FDG-PET in suspicious breast lesions. Eur. Radiol. 13, 1651–1656 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Zonari, P., Baraldi, P. & Crisi, G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49, 795–803 (2007).

    Article  PubMed  Google Scholar 

  42. Yabuuchi, H. et al. Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrast-enhanced MR imaging improve diagnostic accuracy in characterization? Radiology 249, 909–916 (2008).

    Article  PubMed  Google Scholar 

  43. Mazaheri, Y. et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 246, 480–484 (2008).

    Article  PubMed  Google Scholar 

  44. Segal, E. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 25, 675–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Gevaert, O. et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology 264, 387–396 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gutman, D. A. et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. 267, 560–569 (2013).

  47. Zinn, P. O. et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 6, e25451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi, H. Response evaluation of gastrointestinal stromal tumors. Oncologist 13 (Suppl. 2), 4–7 (2008).

    Article  PubMed  Google Scholar 

  49. Yanagawa, M. et al. Evaluation of response to neoadjuvant chemotherapy for esophageal cancer: PET response criteria in solid tumors versus response evaluation criteria in solid tumors. J. Nucl. Med. 53, 872–880 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Teng, F. F., Meng, X., Sun, X. D. & Yu, J. M. New strategy for monitoring targeted therapy: molecular imaging. Int. J. Nanomedicine 8, 3703–3713 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Jansen, J. F. et al. Tumor metabolism and perfusion in head and neck squamous cell carcinoma: pretreatment multimodality imaging with 1H magnetic resonance spectroscopy, dynamic contrast-enhanced MRI, and [18F]FDG-PET. Int. J. Radiat. Oncol. Biol. Phys. 82, 299–307 (2012).

    Article  PubMed  Google Scholar 

  52. Thorwarth, D., Eschmann, S. M., Holzner, F., Paulsen, F. & Alber, M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother. Oncol. 80, 151–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Vera, P. et al. Simultaneous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18Fluoro-misonidazole (F-MISO) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother. Oncol. 98, 109–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Giganti, F. et al. Response to chemotherapy in gastric adenocarcinoma with diffusion-weighted MRI and 18F-FDG-PET/CT: Correlation of apparent diffusion coefficient and partial volume corrected standardized uptake value with histological tumor regression grade. J. Magn. Reson. Imaging http://dx.doi.org/10.1002/jmri.24464.

  56. Galldiks, N. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J. Nucl. Med. 53, 1048–1057 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Buchbender, C., Heusner, T. A., Lauenstein, T. C., Bockisch, A. & Antoch, G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J. Nucl. Med. 53, 928–938 (2012).

    Article  PubMed  Google Scholar 

  58. Buchbender, C., Heusner, T. A., Lauenstein, T. C., Bockisch, A. & Antoch, G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J. Nucl. Med. 53, 1244–1252 (2012).

    Article  PubMed  Google Scholar 

  59. Rajendran, J. G. et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur. J. Nucl. Med. Mol. Imaging 30, 695–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Cherk, M. H. et al. Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non–small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J. Nucl. Med. 47, 1921–1926 (2006).

    CAS  PubMed  Google Scholar 

  61. Komar, G. et al. Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin. Cancer Res. 15, 5511–5517 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kamel, I. R. et al. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology 250, 466–473 (2009).

    Article  PubMed  Google Scholar 

  63. Jenkinson, M. D. et al. Phase II trial of intratumoral BCNU injection and radiotherapy on untreated adult malignant glioma. J. Neurooncol. 99, 103–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Clarke, L. P. et al. The Quantitative Imaging Network: NCI's historical perspective and planned goals. Transl. Oncol. 7, 1–4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. QIBA Protocols and Profiles. Radiological Society of North America [online], (2014).

  66. ECOG-ACRIN cancer research group. ECOG-AGRIN.org [online], (2014).

  67. Yankeelov, T. E. et al. Clinically relevant modeling of tumor growth and treatment response. Sci. Transl. Med. 5, 187ps9 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Szeto, M. D. et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res. 69, 4502–4509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Atuegwu, N. C. et al. Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl. Oncol. 6, 256–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hogea, C., Davatzikos, C. & Biros, G. An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J. Math. Biol. 56, 793–825 (2008).

    Article  PubMed  Google Scholar 

  71. Yankeelov, T. E., Arlinghaus, L. R., Li, X. & Gore, J. C. The role of magnetic resonance imaging biomarkers in clinical trials of treatment response in cancer. Semin. Oncol. 38, 16–25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thakur, M. L. & Lentle, B. C. Report of a summit on molecular imaging. J. Nucl. Med. 46, 11N–42N (2005).

    PubMed  Google Scholar 

  73. Jain, R. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sorensen, A. G. et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sorensen, A. G. et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 72, 402–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Emblem, K. E. et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat. Med. 19, 1178–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ribatti, D. Vascular normalization: a real benefit? Cancer Chemother. Pharmacol. 68, 275–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Vangestel, C. et al. 99mTc-(CO)3 His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab. J. Nucl. Med. 52, 1786–1794 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Vangestel, C. et al. 99mTc-(CO)3 His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab.. J. Nucl. Med. 52, 1786–1794 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.E.Y. thanks the National Cancer Institute for funding support through grants 1U01CA142565, 1U01CA174706, R01 CA138599, R25CA092043. R.G.A. is funded in part by the AUR GE Radiology Research Academic Fellowship. C.C.Q. thanks the Vanderbilt Ingram Cancer Center Young Ambassadors grant and NCI 1R01CA158079. The authors thank the Kleberg Foundation for generously supporting their imaging programme and NCI P30CA68485 (PI: J. Pietenpol). The authors also thank Drs J. Skinner and X. Li of the Vanderbilt University Institute of Imaging Science, Nashville, TN, USA, for preparing Figure 2 and Figure 3, respectively.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to all stages of the preparation of the manuscript for submission.

Corresponding author

Correspondence to Thomas E. Yankeelov.

Ethics declarations

Competing interests

T.E.Y. has been a consultant for Eli Lilly. R.G.A. and C.C.Q. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yankeelov, T., Abramson, R. & Quarles, C. Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol 11, 670–680 (2014). https://doi.org/10.1038/nrclinonc.2014.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.134

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer