Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vessel calibre—a potential MRI biomarker of tumour response in clinical trials

Key Points

  • Negative phase III trials suggest that administration of antiangiogenic therapies in unselected patient groups does not result in optimal outcomes, owing to diversity in cancer biology and natural history

  • Antivascular and antiangiogenic therapies are not directly cytotoxic and, therefore, traditional assessment of MRI-based tumour volume change alone can no longer be considered an adequate biomarker of therapeutic response

  • Intravascular paramagnetic contrast agents induce small and local magnetic field variations in tissue that scale with the blood vessel calibre (the cross-sectional width of the vessel)

  • MRI is exquisitely sensitive to these magnetic field perturbations and, therefore, provides a means for in vivo assessment of tumour vessel calibre

  • Depending on drug and dose administration, initial experiences with antivascular and antiangiogenic therapies and vessel-calibre MRI suggest that pruning of abnormal tumour vessels is often non-uniform

  • Collectively, vessel-calibre MRI and emerging MRI-based assessments, such as vessel architectural imaging, can provide insights into vessel type and oxygenation status—creating new possibilities for clinical trial design and monitoring therapeutic response and outcomes

Abstract

Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vessel calibres in solid cancers.
Figure 2: Vessel-calibre MRI.
Figure 3: Vessel-calibre MRI during antiangiogenic therapy.
Figure 4: Advanced MRI assessments might inform optimal dose scheduling.

Similar content being viewed by others

References

  1. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Connor, J. P., Jackson, A., Parker, G. J., Roberts, C. & Jayson, G. C. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 9, 167–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 6, 327–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  12. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol. 14, e396–e406 (2013).

    Article  PubMed  Google Scholar 

  13. Leach, M. O. et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br. J. Cancer 92, 1599–1610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michaelis, L. C. & Ratain, M. J. Measuring response in a post-RECIST world: from black and white to shades of grey. Nat. Rev. Cancer 6, 409–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Morgan, B. Opportunities and pitfalls of cancer imaging in clinical trials. Nat. Rev. Clin. Oncol. 8, 517–527 (2011).

    Article  PubMed  Google Scholar 

  16. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Jain, R. K. An indirect way to tame cancer. Sci. Am. 310, 46–53 (2014).

    Article  PubMed  Google Scholar 

  22. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer 8, 425–437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeo, S. G., Kim, J. S., Cho, M. J., Kim, K. H. & Kim, J. S. Interstitial fluid pressure as a prognostic factor in cervical cancer following radiation therapy. Clin. Cancer Res. 15, 6201–6207 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  26. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    CAS  PubMed  Google Scholar 

  27. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  28. Huang, Y., Stylianopoulos, T., Duda, D. G., Fukumura, D. & Jain, R. K. Benefits of vascular normalization are dose and time dependent—letter. Cancer Res. 73, 7144–7146 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. 3, 24–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Van der Veldt, A. A. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arjaans, M. et al. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res. 73, 3347–3355 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  35. Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Chauhan, V. P. & Jain, R. K. Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Afaq, A., Andreou, A. & Koh, D. M. Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging 10 (Spec. No. A), S179–S188 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Patterson, D. M., Padhani, A. R. & Collins, D. J. Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat. Clin. Pract. Oncol. 5, 220–233 (2008).

    Article  PubMed  Google Scholar 

  41. van Osch, M. J., Vonken, E. J., Bakker, C. J. & Viergever, M. A. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn. Reson. Med. 45, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Macdonald, D. R., Cascino, T. L., Schold, S. C. Jr & Cairncross, J. G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 8, 1277–1280 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Gehan, E. A. & Tefft, M. C. Will there be resistance to the RECIST (Response Evaluation Criteria in Solid Tumors)? J. Natl Cancer Inst. 92, 179–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Oxnard, G. R. et al. When progressive disease does not mean treatment failure: reconsidering the criteria for progression. J. Natl Cancer Inst. 104, 1534–1541 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Therasse, P., Eisenhauer, E. A. & Verweij, J. RECIST revisited: a review of validation studies on tumour assessment. Eur. J. Cancer 42, 1031–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Twombly, R. Criticism of tumor response criteria raises trial design questions. J. Natl Cancer Inst. 98, 232–234 (2006).

    Article  PubMed  Google Scholar 

  48. Nishino, M. et al. Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST. AJR Am. J. Roentgenol. 198, 737–745 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Llovet, J. M. et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl Cancer Inst. 100, 698–711 (2008).

    Article  PubMed  Google Scholar 

  50. Rustin, G. J. et al. Re: New guidelines to evaluate the response to treatment in solid tumors (ovarian cancer). J. Natl Cancer Inst. 96, 487–488 (2004).

    Article  PubMed  Google Scholar 

  51. Hoos, A. et al. Improved endpoints for cancer immunotherapy trials. J. Natl Cancer Inst. 102, 1388–1397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scher, H. I., Morris, M. J., Kelly, W. K., Schwartz, L. H. & Heller, G. Prostate cancer clinical trial end points: “RECIST”ing a step backwards. Clin. Cancer Res. 11, 5223–5232 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Faivre, S. J., Bouattour, M., Dreyer, C. & Raymond, E. Sunitinib in hepatocellular carcinoma: redefining appropriate dosing, schedule, and activity end points. J. Clin. Oncol. 27, e248–e250 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Sorensen, A. G. et al. Comparison of diameter and perimeter methods for tumor volume calculation. J. Clin. Oncol. 19, 551–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Goldberg, S. N. et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 235, 728–739 (2005).

    Article  PubMed  Google Scholar 

  56. Reuter, M. et al. Impact of MRI head placement on glioma response assessment. J. Neurooncol. 118, 123–129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brandsma, D., Stalpers, L., Taal, W., Sminia, P. & van den Bent, M. J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9, 453–461 (2008).

    Article  PubMed  Google Scholar 

  58. Wong, C. S. & van der Kogel, A. J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol. Interv. 4, 273–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Waldman, A. D. et al. Quantitative imaging biomarkers in neuro-oncology. Nat. Rev. Clin. Oncol. 6, 445–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Gore, J. C., Manning, H. C., Quarles, C. C., Waddell, K. W. & Yankeelov, T. E. Magnetic resonance in the era of molecular imaging of cancer. Magn. Reson. Imaging 29, 587–600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van den Bent, M. J., Vogelbaum, M. A., Wen, P. Y., Macdonald, D. R. & Chang, S. M. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald's Criteria. J. Clin. Oncol. 27, 2905–2908 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Burrell, J. S. et al. MRI measurements of vessel calibre in tumour xenografts: comparison with vascular corrosion casting. Microvasc. Res. 84, 323–329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zaharchuk, G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am. J. Neuroradiol. 28, 1850–1858 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ashton, E. & Riek, J. Advanced MR techniques in multicenter clinical trials. J. Magn. Reson. Imaging 37, 761–769 (2013).

    Article  PubMed  Google Scholar 

  65. Meier, P. & Zierler, K. L. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6, 731–744 (1954).

    Article  CAS  PubMed  Google Scholar 

  66. Neeman, M. & Dafni, H. Structural, functional, and molecular MR imaging of the microvasculature. Annu. Rev. Biomed. Eng. 5, 29–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Fisel, C. R. et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn. Reson. Med. 17, 336–347 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Rosen, B. R. et al. Contrast agents and cerebral hemodynamics. Magn. Reson. Med. 19, 285–292 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Rosen, B. R. et al. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn. Reson. Med. 22, 293–299 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bandettini, P. A., Wong, E. C., Jesmanowicz, A., Hinks, R. S. & Hyde, J. S. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed. 7, 12–20 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Hoppel, B. E. et al. Measurement of regional blood oxygenation and cerebral hemodynamics. Magn. Reson. Med. 30, 715–723 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Kennan, R. P., Zhong, J. & Gore, J. C. Intravascular susceptibility contrast mechanisms in tissues. Magn. Reson. Med. 31, 9–21 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Weisskoff, R. M., Zuo, C. S., Boxerman, J. L. & Rosen, B. R. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn. Reson. Med. 31, 601–610 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Boxerman, J. L., Hamberg, L. M., Rosen, B. R. & Weisskoff, R. M. MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 34, 555–566 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Kiselev, V. G. & Posse, S. Analytical model of susceptibility-induced MR signal dephasing: effect of diffusion in a microvascular network. Magn. Reson. Med. 41, 499–509 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Dennie, J. et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn. Reson. Med. 40, 793–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Donahue, K. M. et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn. Reson. Med. 43, 845–853 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Provenzale, J. M., Mukundan, S. & Barboriak, D. P. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239, 632–649 (2006).

    Article  PubMed  Google Scholar 

  80. Covarrubias, D. J., Rosen, B. R. & Lev, M. H. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9, 528–537 (2004).

    Article  PubMed  Google Scholar 

  81. Oostendorp, M., Post, M. J. & Backes, W. H. Vessel growth and function: depiction with contrast-enhanced MR imaging. Radiology 251, 317–335 (2009).

    Article  PubMed  Google Scholar 

  82. Jensen, J. H. & Chandra, R. MR imaging of microvasculature. Magn. Reson. Med. 44, 224–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Tropres, I. et al. Vessel size imaging. Magn. Reson. Med. 45, 397–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Kiselev, V. G., Strecker, R., Ziyeh, S., Speck, O. & Hennig, J. Vessel size imaging in humans. Magn. Reson. Med. 53, 553–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Remmele, S. et al. Concurrent MR blood volume and vessel size estimation in tumors by robust and simultaneous DeltaR2 and DeltaR2* quantification. Magn. Reson. Med. 66, 144–153 (2011).

    Article  PubMed  Google Scholar 

  86. Packard, S. D. et al. Functional response of tumor vasculature to PaCO2: determination of total and microvascular blood volume by, MRI. Neoplasia 5, 330–338 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Quarles, C. C. & Schmainda, K. M. Assessment of the morphological and functional effects of the anti-angiogenic agent SU11657 on 9L gliosarcoma vasculature using dynamic susceptibility contrast MRI. Magn. Reson. Med. 57, 680–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Schmiedeskamp, H. et al. Simultaneous perfusion and permeability measurements using combined spin- and gradient-echo MRI. J. Cereb. Blood Flow Metab. 33, 732–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, S. G. et al. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed. 26, 949–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Farrar, C. T. et al. In vivo validation of MRI vessel caliber index measurement methods with intravital optical microscopy in a U87 mouse brain tumor model. Neuro Oncol. 12, 341–350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weinstein, J. S. et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 30, 15–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Christen, T. et al. MR vascular fingerprinting: a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. Neuroimage 89, 262–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Jochimsen, T. H. & Moller, H. E. Increasing specificity in functional magnetic resonance imaging by estimation of vessel size based on changes in blood oxygenation. Neuroimage 40, 228–236 (2008).

    Article  PubMed  Google Scholar 

  95. Pannetier, N. A., Sohlin, M., Christen, T., Schad, L. & Schuff, N. Numerical modeling of susceptibility-related MR signal dephasing with vessel size measurement: phantom validation at 3T. Magn. Reson. Med. http://dx.doi.org/10.1002/mrm.24968.

  96. He, X. & Yablonskiy, D. A. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn. Reson. Med. 57, 115–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hsu, Y. Y., Yang, W. S., Lim, K. E. & Liu, H. L. Vessel size imaging using dual contrast agent injections. J. Magn. Reson. Imaging 30, 1078–1084 (2009).

    Article  PubMed  Google Scholar 

  98. Kiselev, V. G. Transverse relaxation effect of MRI contrast agents: a crucial issue for quantitative measurements of cerebral perfusion. J. Magn. Reson. Imaging 22, 693–696 (2005).

    Article  PubMed  Google Scholar 

  99. Emblem, K. E. et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat. Med. 19, 1178–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kellner, E. et al. Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn. Reson. Med. 69, 771–780 (2013).

    Article  PubMed  Google Scholar 

  101. Germuska, M. A., Meakin, J. A. & Bulte, D. P. The influence of noise on BOLD-mediated vessel size imaging analysis methods. J. Cereb. Blood Flow Metab. 33, 1857–1863 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lemasson, B. et al. Assessment of multiparametric MRI in a human glioma model to monitor cytotoxic and anti-angiogenic drug effects. NMR Biomed. 24, 473–482 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Fredrickson, J. et al. Clinical translation of VSI using ferumoxytol: feasibility in a phase I oncology clinical trial population [abstract]. Proc. Int. Soc. Mag. Reson. Med. (ISMRM) Annual Meeting a1987 (2012).

  104. Persigehl, T. et al. Tumor blood volume determination by using susceptibility-corrected DeltaR2* multiecho MR. Radiology 255, 781–789 (2010).

    Article  PubMed  Google Scholar 

  105. Wang, Y.-X. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Pannetier, N. et al. Vessel size index measurements in a rat model of glioma: comparison of the dynamic (Gd) and steady-state (iron-oxide) susceptibility contrast MRI approaches. NMR Biomed. 25, 218–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Schmiedeskamp, H., Straka, M. & Bammer, R. Compensation of slice profile mismatch in combined spin- and gradient-echo echo-planar imaging pulse sequences. Magn. Reson. Med. 67, 378–388 (2012).

    Article  PubMed  Google Scholar 

  108. Paulson, E. S. & Schmainda, K. M. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249, 601–613 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li, S. P. et al. Primary human breast adenocarcinoma: imaging and histologic correlates of intrinsic susceptibility-weighted MR imaging before and during chemotherapy. Radiology 257, 643–652 (2010).

    Article  PubMed  Google Scholar 

  110. Benner, T., Heiland, S., Erb, G., Forsting, M. & Sartor, K. Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Magn. Reson. Imaging 15, 307–317 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Li, X., Tian, J. & Millard, R. K. Erroneous and inappropriate use of gamma fits to tracer-dilution curves in magnetic resonance imaging and nuclear medicine. Magn. Reson. Imaging 21, 1095–1096 (2003).

    Article  PubMed  Google Scholar 

  112. Ito, H., Kanno, I., Ibaraki, M., Hatazawa, J. & Miura, S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J. Cereb. Blood Flow Metab. 23, 665–670 (2003).

    Article  PubMed  Google Scholar 

  113. Ito, H., Ibaraki, M., Kanno, I., Fukuda, H. & Miura, S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J. Cereb. Blood Flow Metab. 25, 852–857 (2005).

    Article  PubMed  Google Scholar 

  114. Pathak, A. P., Ward, B. D. & Schmainda, K. M. A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method. Neuroimage 40, 1130–1143 (2008).

    Article  PubMed  Google Scholar 

  115. Tropres, I., Lamalle, L., Farion, R., Segebarth, C. & Remy, C. Vessel size imaging using low intravascular contrast agent concentrations. MAGMA 17, 313–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Valable, S. et al. Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study. NMR Biomed. 21, 1043–1056 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, E. et al. Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant? Magn. Reson. Med. 70, 1106–1116 (2013).

    Article  PubMed  Google Scholar 

  118. Persigehl, T. et al. Vessel size imaging (VSI) by robust magnetic resonance (MR) relaxometry: MR-VSI of solid tumors in correlation with immunohistology and intravital microscopy. Mol. Imaging 12, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Ungersma, S. E. et al. Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis. Magn. Reson. Med. 63, 1637–1647 (2010).

    Article  PubMed  Google Scholar 

  120. Bauerle, T., Merz, M., Komljenovic, D., Zwick, S. & Semmler, W. Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin. Cancer Res. 16, 3215–3225 (2010).

    Article  PubMed  Google Scholar 

  121. Tofts, P. S. & Collins, D. J. Multicentre imaging measurements for oncology and in the brain. Br. J. Radiol. 84 (Spec. No. 2), S213–S226 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Larsen, O. A. & Lassen, N. A. Cerebral hematocrit in normal man. J. Appl. Physiol. 19, 571–574 (1964).

    Article  CAS  PubMed  Google Scholar 

  123. Ostergaard, L., Weisskoff, R. M., Chesler, D. A., Gyldensted, C. & Rosen, B. R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn. Reson. Med. 36, 715–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Schmainda, K. M. et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am. J. Neuroradiol. 25, 1524–1532 (2004).

    PubMed  PubMed Central  Google Scholar 

  125. Lamalle, L. et al. VSI and BV MRI of human brain tumours [abstract]. Proc. 11th Annu. Meeting Int. Soc. Mag. Reson. Med. a1271 (2003).

  126. Kiselev, V. G. et al. quantitative vessel size imaging in humans [abstract]. Proc. 11th Annu. Meeting Int. Soc. Mag. Reson. Med. a2192 (2003).

  127. Breyer, T. et al. Clinical evaluation of vessel size imaging in 31 cases of human glial brain tumor [abstract]. Proc. 15th Annu. Meeting Int. Soc. Mag. Reson. Med. a836 (2007).

  128. Xu, C., Kiselev, V. G., Moller, H. E. & Fiebach, J. B. Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging. Magn. Reson. Med. 69, 981–991 (2013).

    Article  PubMed  Google Scholar 

  129. Pectasides, M. et al. Evaluation of vessel size heterogeneity in brain tumors with dynamic contrast-enhanced dual echo perfusion weighted imaging [abstract]. Proc. 16th Annu. Meeting Int. Soc. Mag. Reson. Med. a152 (2004).

  130. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sorensen, A. G. et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Batchelor, T. T. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl Acad. Sci. USA 110, 19059–19064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Polaskova, P. et al. Repeatability of MR-based vessel caliber estimates in brain tumor imaging [abstract]. Proc. Am. Soc. Neuroradiol. Annu. Meeting O-404 (2013).

  134. Lüdemann, L. et al. Simultaneous quantification of perfusion and permeability in the prostate using dynamic contrast-enhanced magnetic resonance imaging with an inversion-prepared dual-contrast sequence. Ann. Biomed. Eng. 37, 749–762 (2009).

    Article  PubMed  Google Scholar 

  135. Jin, N. et al. GESFIDE-PROPELLER approach for simultaneous R2 and R2* measurements in the abdomen. Magn. Reson. Imaging 31, 1760–1765 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yang, X. et al. Evaluation of renal oxygenation in rat by using R2′ at 3-T magnetic resonance: initial observation. Acad. Radiol. 15, 912–918 (2008).

    Article  PubMed  Google Scholar 

  137. Ferretti, S. et al. Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure. Clin. Cancer Res. 11, 7773–7784 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Howe, F. A., McPhail, L. D., Griffiths, J. R., McIntyre, D. J. & Robinson, S. P. Vessel size index magnetic resonance imaging to monitor the effect of antivascular treatment in a rodent tumor model. Int. J. Radiat. Oncol. Biol. Phys. 71, 1470–1476 (2008).

    Article  PubMed  Google Scholar 

  139. Kording, F. et al. Simultaneous assessment of vessel size index, relative blood volume, and vessel permeability in a mouse brain tumor model using a combined spin echo gradient echo echo-planar imaging sequence and viable tumor analysis. J. Magn. Reson. Imaging http://dx.doi.org/10.1002/jmri.24513.

  140. Nielsen, T. et al. Combretastatin A-4 phosphate affects tumor vessel volume and size distribution as assessed using MRI-based vessel size imaging. Clin. Cancer Res. 18, 6469–6477 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Yuan, F. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568 (1994).

    CAS  PubMed  Google Scholar 

  142. Kamoun, W. S. et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol. 27, 2542–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Walker-Samuel, S. et al. Non-invasive in vivo imaging of vessel calibre in orthotopic prostate tumour xenografts. Int. J. Cancer 130, 1284–1293 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Zwick, S. et al. Assessment of vascular remodeling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J. Magn. Reson. Imaging 29, 1125–1133 (2009).

    Article  PubMed  Google Scholar 

  145. Lemasson, B. et al. Avastin alone or combined to Campto® reduces local blood oxygen saturation in an orthotopic human glioblastoma model (U87-MG) in nude rats [abstract]. Proc. 17th Annu. Meeting Int. Soc. Mag. Reson. Med. a1013 (2009).

  146. Merz, M., Komljenovic, D., Zwick, S., Semmler, W. & Bauerle, T. Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. Eur. J. Cancer 47, 277–286 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Zwick, S. et al. Dynamic contrast-enhanced MRI and vessel size imaging sensitively indicate antiangiogenic therapy effects on tumor xenografts in mice [abstract]. Proc. 15th Annu. Meeting Int. Soc. Mag. Reson. Med. a564 (2007).

  148. Farrar, C. T. et al. Sensitivity of MRI tumor biomarkers to VEGFR inhibitor therapy in an orthotopic mouse glioma model. PLoS ONE 6, e17228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Woenne, E. C. et al. MMP inhibition blocks fibroblast-dependent skin cancer invasion, reduces vascularization and alters VEGF-A and PDGF-BB expression. Anticancer Res. 30, 703–711 (2010).

    CAS  PubMed  Google Scholar 

  150. Palmowski, M. et al. Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res. 68, 7042–7049 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Remmele, S., Senegas, J., Persigehl, T., Bremer, C. & Ring, J. Simultaneous blood volume and vessel size imaging technique for localized therapy response detection [abstract]. Proc. 17th Annu. Meeting Int. Soc. Mag. Reson. Med. a4203 (2009).

  153. Opstad, K. S. & Howe, F. A. Vessel size index MRI to monitor the effects of vascular disruption by ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid) in orthotopic gliomas [abstract]. Proc. 18th Annu. Meeting Int. Soc. Mag. Reson. Med. a4837 (2010).

  154. Ullrich, R. T. et al. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice. PLoS ONE 6, e19592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Boult, J. K. et al. False-negative MRI biomarkers of tumour response to targeted cancer therapeutics. Br. J. Cancer 106, 1960–1966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Boult, J. K., Terkelsen, J., Walker-Samuel, S., Bradley, D. P. & Robinson, S. P. A multi-parametric imaging investigation of the response of C6 glioma xenografts to MLN0518 (tandutinib) treatment. PLoS ONE 8, e63024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  158. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  159. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  160. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  162. Batchelor, T. T. et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J. Clin. Oncol. 31, 3212–3218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Weller, M. & Yung, W. K. Angiogenesis inhibition for glioblastoma at the edge: beyond AVAGlio and RTOG 0825. Neuro Oncol. 15, 971 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  166. NCI Cancer Imaging Program. Imaging Guidelines for Clinical Trials [online], (2014).

  167. Caseiras, G. B. et al. Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur. J. Radiol. 73, 215–220 (2010).

    Article  PubMed  Google Scholar 

  168. Ng, C. S. et al. Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. AJR Am. J. Roentgenol. 194, W134–W140 (2010).

    Article  PubMed  Google Scholar 

  169. Gunter, J. L. et al. Measurement of MRI scanner performance with the ADNI phantom. Med. Phys. 36, 2193–2205 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rosen, B. R., Belliveau, J. W., Vevea, J. M. & Brady, T. J. Perfusion imaging with NMR contrast agents. Magn. Reson. Med. 14, 249–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  171. NCI Cancer Imaging Program. Imaging Response Criteria [online], (2014).

  172. Gaustad, J. V., Pozdniakova, V., Hompland, T., Simonsen, T. G. & Rofstad, E. K. Magnetic resonance imaging identifies early effects of sunitinib treatment in human melanoma xenografts. J. Exp. Clin. Cancer Res. 32, 93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang, X. & Knopp, M. V. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J. Biomed. Biotechnol. 2011, 732848 (2011).

    PubMed  PubMed Central  Google Scholar 

  174. Christen, T., Bolar, D. S. & Zaharchuk, G. Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications. AJNR Am. J. Neuroradiol. 34, 1113–1123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jespersen, S. N. & Ostergaard, L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J. Cereb. Blood Flow Metab. 32, 264–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Sorensen, A. G. et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 72, 402–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Badruddoja, M. A. et al. Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro Oncol. 5, 235–243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tropres, I. et al. In vivo assessment of tumoral angiogenesis. Magn. Reson. Med. 51, 533–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Beaumont, M. et al. Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI. J. Cereb. Blood Flow Metab. 29, 1714–1726 (2009).

    Article  PubMed  Google Scholar 

  180. Douma, K. et al. Evaluation of magnetic resonance vessel size imaging by two-photon laser scanning microscopy. Magn. Reson. Med. 63, 930–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Lemasson, B. et al. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn. Reson. Med. 69, 18–26 (2013).

    Article  PubMed  Google Scholar 

  182. Zhang, Y., Jiang, J., Zhang, S., Xiong, W. & Zhu, W. MR Vessel size imaging of brain tumors [abstract]. Proc. 98th Annu. Meeting Radiol. Soc. N. Am. LL-NRS-TU5A (2012).

  183. Viel, T. et al. Non-invasive imaging of glioma vessel size and densities in correlation with tumour cell proliferation by small animal PET and MRI. Eur. J. Nucl. Med. Mol. Imaging 40, 1595–1606 (2013).

    Article  PubMed  Google Scholar 

  184. Sampath, D. et al. Multimodal microvascular imaging reveals that selective inhibition of class I PI3K is sufficient to induce an antivascular response. Neoplasia 15, 694–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Martin (Department of Chemical Engineering, Massachusetts Institute of Technology and the Edwin L. Steele Laboratory of Tumor Biology, Massachusetts General Hospital) and T. Stylianopoulos (Department of Mechanical and Manufacturing Engineering, University of Cyprus) for help with this manuscript. The authors apologize to the authors whose work we could not cite owing to limits on the number of references that we were able to include. The authors acknowledge funding support from the National Cancer Institute, NIH, US Department of Human and Health Services (grants NCT00254943 to K.E.E., T32-CA009502 to C.T.F., NCT00756106 to E.R.G., NCT00662506 to T.T.B., S10 RR021110-01A1 to B.R.R., NCT00254943 to A.G.S. and P01CA80124 to R.K.J.), and the South-Eastern Norway Regional Health Authority (grant 2013069 to K.E.E.). In addition, R.J.H.B. acknowledges funding from the Sigrid Juselius Foundation, the Instrumentarium Research Foundation, the Academy of Finland, the Paulo Foundation and the Finnish Medical Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data, discussion of content, writing, and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Kyrre E. Emblem.

Ethics declarations

Competing interests

K.E.E. has intellectual property rights with NordicNeuroLab. T.T.B. is a consultant and/or is an advisory board member for Advance Medical, Agenus, Champions Biotechnology, Kirin Pharmaceuticals, Merck & Co. Inc., Novartis, Proximagen and Roche, and has received research funding from AstraZeneca, Millenium and Pfizer. B.R.R is a consultant and an advisory board member for Siemens Medical. A.G.S. is the Chief Executive Officer for Siemens HealthCare USA. R.K.J. is on the Board of Directors of Xtuit; holds equity in Enlight, SynDevRx and Xtuit; and has received research funding from Dyax, Medimmune and Roche. C.T.F., E.R.G. and R.J.H.B. declare no competing interests.

Supplementary information

Supplementary Figure 1

PMID-based reports on vessel-calibre MRI. (DOC 53 kb)

Supplementary Figure 2

MRI-based vessel calibre measurements in 14 patients with newly diagnosed glioblastomas undergoing chemoradiation therapy, but not antiangiogenic therapy with the VEGF receptor inhibitor cediranib, for 6 weeks (including day 43). (DOC 127 kb)

Supplementary Figure 3

MRI and VAI of healthy kidneys. (DOC 179 kb)

Supplementary Methods

(DOC 326 kb)

Supplementary Table 1

Abbreviations and terminology relating to vessel-calibre MRI (DOC 91 kb)

Supplementary Table 2

Conventional imaging response criteria (DOC 49 kb)

Supplementary Table 3

Vessel-calibre MRI validation studies (DOC 284 kb)

Supplementary Table 4

PMID articles reporting animal or human vessel-calibre MRI data (DOC 136 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emblem, K., Farrar, C., Gerstner, E. et al. Vessel calibre—a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 11, 566–584 (2014). https://doi.org/10.1038/nrclinonc.2014.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.126

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer