Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma

Abstract

The clinical benefits of BRAF inhibition in patients with advanced-stage BRAF-mutant melanoma are now well established. Although the emergence of cutaneous squamous-cell carcinomas (SCCs) and secondary melanomas in patients on BRAF-inhibitor therapy have been well described, reports are emerging of additional secondary premalignant and malignant events, including RAS-mutant leukaemia, the metastatic recurrence of RAS-mutant colorectal cancer and the development of gastric and colonic polyps. In most cases, paradoxical MAPK activation—resulting from the BRAF-inhibitor-mediated homodimerization and heterodimerization of nonmutant RAF isoforms—seems to underlie the development of these secondary tumours. Although evidence supports that therapy with the simultaneous administration of BRAF and MEK inhibitors abrogates the onset of treatment-induced SCCs, whether combination treatment will limit the emergence of all BRAF-inhibitor-driven pathologies is unclear. In this Review, we describe the clinical and mechanistic manifestations of secondary cancers that have thus far been observed to arise as a consequence of BRAF inhibition. We discuss the concept of pre-existing populations of partly transformed cells with malignant potential that might be present in various organ systems, and the rationale for novel therapeutic strategies for the management of BRAF-inhibitor-induced neoplasia.

Key Points

  • BRAF inhibitors are commonly used in patients with BRAF-mutant melanoma and their use is expanding to other patient populations

  • Paradoxical activation of the MAPK pathway can occur in cells wild-type for BRAF through the BRAF-inhibitor-mediated formation of RAF dimers

  • Secondary skin changes, including hyperkeratosis, keratoacanthomas and squamous-cell carcinomas, can occur in patients treated with BRAF inhibitors

  • Secondary melanomas, gastric and colonic polyps and recurrences of pre-existing malignancies have also been reported in patients receiving BRAF inhibitors

  • Strategies to manage or limit the development of treatment-induced cancers include combination therapy with inhibitors of BRAF and MEK, and use of retinoids, topical 5-fluorouracil and cyclooxygenase-2 inhibitors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAF activation of the MAPK/ERK pathway.
Figure 2: Paradoxical activation of the MAPK/ERK pathway in tumours treated with RAF inhibitors.
Figure 3: Secondary cutaneous skin changes in patients receiving vemurafenib treatment.
Figure 4: MAPK signalling cooperates with loss of APC to promote adenoma development.

Similar content being viewed by others

References

  1. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  8. Tol, J., Nagtegaal, I. D. & Punt, C. J. A. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med. 361, 98–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Wellbrock, C. et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Fedorenko, I. V., Paraiso, K. H. & Smalley, K. S. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem. Pharmacol. 82, 201–209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klein, R. M. & Aplin, A. E. Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Res. 69, 2224–2233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cartlidge, R. A. et al. Oncogenic BRAF(V600E) inhibits BIM expression to promote melanoma cell survival. Pigment Cell Melanoma Res. 21, 534–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Paraiso, K. H. et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer 102, 1724–1730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shao, Y. & Aplin, A. E. Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells. Cancer Res. 70, 6670–6681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arozarena, I. et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19, 45–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Haass, N. K. et al. The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin. Cancer Res. 14, 230–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Long, G. V. et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol. 29, 1239–1246 (2011).

    Article  PubMed  Google Scholar 

  20. Menzies, A. M., Long, G. V. & Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des. Devel. Ther. 6, 391–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Greger, J. G. et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol. Cancer Ther. 11, 909–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Kirkwood, J. M. et al. Phase II, open-label, randomized trial of the MEK 1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin. Cancer Res. 18, 555–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ascierto, P. A. et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 14, 249–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Robert, C. et al. METRIC phase III study: Efficacy of trametinib (T), a potent and selective MEK inhibitor (MEKi), in progression-free survival (PFS) and overall survival (OS), compared with chemotherapy (C) in patients (pts) with BRAFV600E/K mutant advanced or metastatic melanoma (MM) [abstract]. J. Clin. Oncol. 30 (Suppl.), LBA8509 (2012).

    Article  Google Scholar 

  25. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Falchook, G. S. et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379, 1893–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, H. B. et al. Melanoma whole-exome sequencing identifies B-V600E-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Halaban, R. et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res. 23, 190–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaplan, F. M., Shao, Y., Mayberry, M. M. & Aplin, A. E. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the ongenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cell lines. Oncogene 30, 366–371 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell. Biol. 5, 875–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Luo, Z. et al. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Garnett, M. J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20, 963–969 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Cho, K. J. et al. Raf Inhibitors target ras spatiotemporal dynamics. Curr. Biol. 22, 945–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Zang, M. W. et al. Characterization of Ser338 phosphorylation for Raf-1 activation. J. Biol. Chem. 283, 31429–31437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baljuls, A., Kholodenko, B. N. & Kolch, W. It takes two to tango--signalling by dimeric Raf kinases. Mol. Biosyst. 9, 551–558 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Rushworth, L. K., Hindley, A. D., O'Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell. Biol. 26, 2262–2272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl Acad. Sci. USA 107, 14903–14908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keefe, D. M. & Bateman, E. H. Tumor control versus adverse events with targeted anticancer therapies. Nat. Rev. Clin. Oncol. 9, 98–109 (2012).

    Article  CAS  Google Scholar 

  49. Anforth, R., Fernandez-Penas, P. & Long, G. V. Cutaneous toxicities of RAF inhibitors. Lancet Oncol. 14, e11–e18 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Anforth, R. M. et al. Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br. J. Dermatol. 167, 1153–1160 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Lacouture, M. E. et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist 18, 314–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robert, C., Mateus, C., Spatz, A., Wechsler, J. & Escudier, B. Dermatologic symptoms associated with the multikinase inhibitor sorafenib. J. Am. Acad. Dermatol. 60, 299–305 (2009).

    Article  PubMed  Google Scholar 

  53. Rinderknecht, J. D. et al. RASopathic skin eruptions during vemurafenib therapy. PLoS ONE 8, e58721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ravanat, J. L., Douki, T. & Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B. 63, 88–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Zimmer, L. et al. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J. Clin. Oncol. 30, 2375–2383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dalle, S., Poulalhon, N. & Thomas, L. Vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 365, 1448–1449 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Andrews, M. et al. Colorectal cancer promoted in a patient receiving dabrafenib (GSK2118436) in combination with MEK1/2 inhibitor trametinib (GSK1120212) [abstract]. Pigment Cell Melanoma Res. 25, 842 (2012).

    Google Scholar 

  61. Kim, K. et al. Significant long-term survival benefit demonstrated with vemurafenib in ongoing phase I study. Pigment Cell Melanoma Res. 25, 866 (2012).

    Article  CAS  Google Scholar 

  62. Chapman, P. B. et al. Development of colonic adenomas and gastric polyps in BRAF mutant melanoma patients treated with vemurafenib. Pigment Cell Melanoma Res. 25, 847 (2012).

    Google Scholar 

  63. Heitman, S. J. et al. Prevalence of adenomas and colorectal cancer in average risk individuals: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 7, 1272–1278 (2009).

    Article  PubMed  Google Scholar 

  64. Carmack, S. W., Genta, R. M., Schuler, C. M. & Saboorian, M. H. The current spectrum of gastric polyps: a 1-year national study of over 120,000 patients. Am. J. Gastroenterol. 104, 1524–1532 (2009).

    Article  PubMed  Google Scholar 

  65. Carmack, S. W., Genta, R. M., Graham, D. Y. & Lauwers, G. Y. Management of gastric polyps: a pathology-based guide for gastroenterologists. Nat. Rev. Gastroenterol. Hepatol. 6, 331–341 (2009).

    Article  PubMed  Google Scholar 

  66. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Kressner, U. et al. Ki-ras mutations and prognosis in colorectal cancer. Eur. J. Cancer 34, 518–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Brink, M. et al. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 24, 703–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, S. H. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat. Med. 16, 665–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAFV600E inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Turke, A. B. et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 72, 3228–3237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abel, E. V. et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J. Clin. Invest. 123, 2155–2168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  78. Le, K., Blomain, E. & Aplin, A. E. Selective RAF inhibitor impairs ERK1/2 phosphorylation and growth in mutant NRAS, vemurafenib-resistance melanoma cells. Pigment Cell Melanoma Res. http://dx.doi.org/10.1111/pcmr.12092.

  79. Anforth, R., Blumetti, T. C., Mohd Affandi, A. & Fernandez-Penas, P. Systemic retinoid therapy for chemoprevention of nonmelanoma skin cancer in a patient treated with vemurafenib. J. Clin. Oncol. 30, e165–e167 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Lien, M. H., Fenske, N. A. & Glass, L. F. Advances in the chemoprevention of non-melanoma skin cancer in high-risk organ transplant recipients. Semin. Oncol. 39, 134–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Altucci, L., Leibowitz, M. D., Ogilvie, K. M., de Lera, A. R. & Gronemeyer, H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 6, 793–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Escuin-Ordinas, H. et al. COX2 inhibition prevents the appearance of cutaneous squamous cell carcinomas accelerated by BRAF inhibitors. Pigment Cell Melanoma Res. 25, 854 (2012).

    Google Scholar 

  83. An, K. P. et al. Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochem. Photobiol. 76, 73–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Pentland, A. P., Schoggins, J. W., Scott, G. A., Khan, K. N. & Han, R. Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 20, 1939–1944 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Burns, E. M. et al. Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma. Carcinogenesis 34, 370–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Elmets, C. A. et al. Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. J. Natl Cancer Inst. 102, 1835–1844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bertagnolli, M. M. et al. Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev. Res. 2, 310–321 (2009).

    Article  CAS  Google Scholar 

  88. Arber, N. & Moshkowitz, M. Small bowel polyposis syndromes. Curr. Gastroenterol. Rep. 13, 435–441 (2011).

    Article  PubMed  Google Scholar 

  89. Harach, H. R., Franssila, K. O. & Wasenius, V. M. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer 56, 531–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  90. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  91. Delongchamps, N. B., de la Roza, G., Jones, R., Jumbelic, M. & Haas, G. P. Saturation biopsies on autopsied prostates for detecting and characterizing prostate cancer. BJU Int. 103, 49–54 (2009).

    Article  PubMed  Google Scholar 

  92. Ling, G. et al. Persistent p53 mutations in single cells from normal human skin. Am. J. Pathol. 159, 1247–1253 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smalley, K. S. & Sondak, V. K. Skin cancer: Targeted therapy for melanoma: is double hitting a home run? Nat. Rev. Clin. Oncol. 10, 5–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  95. Ding, Q. et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol. Cell 19, 159–170 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. S. M. Smalley is supported by NIH/National Cancer Institute grants (R01 CA161107-02 and U54 CA143970-03).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the manuscript, discussed its contents, wrote the article and edited it before submission.

Corresponding author

Correspondence to Keiran S. M. Smalley.

Ethics declarations

Competing interests

G. T. Gibney acts as a consultant or advisory board member for following companies: Genentech and Roche. All other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibney, G., Messina, J., Fedorenko, I. et al. Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol 10, 390–399 (2013). https://doi.org/10.1038/nrclinonc.2013.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing