Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Charged particle therapy—optimization, challenges and future directions

Abstract

The use of charged particle therapy to control tumours non-invasively offers advantages over conventional radiotherapy. Protons and heavy ions deposit energy far more selectively than X-rays, allowing a higher local control of the tumour, a lower probability of damage to healthy tissue, low risk of complications and the chance for a rapid recovery after therapy. Charged particles are also useful for treating tumours located in areas that surround tissues that are radiosensitive and in anatomical sites where surgical access is limited. Current trial outcomes indicate that accelerated ions can potentially replace surgery for radical cancer treatments, which might be beneficial as the success of surgical cancer treatments are largely dependent on the expertise and experience of the surgeon and the location of the tumour. However, to date, only a small number of controlled randomized clinical trials have made comparisons between particle therapy and X-rays. Therefore, although the potential advantages are clear and supported by data, the cost:benefit ratio remains controversial. Research in medical physics and radiobiology is focusing on reducing the costs and increasing the benefits of this treatment.

Key Points

  • Charged particle therapy (CPT) is an emerging technique in radiotherapy, with several new centres under construction worldwide, despite their high cost compared to conventional X-ray therapy

  • Protons are ideal for conformal treatment, and are useful for treating paediatric tumours; reduced late morbidity is expected because of the lower integral dose to the normal tissue

  • Heavy ions (carbon) provide physical and biological advantages compared with X-rays, such as high relative biological effectiveness and reduced oxygen enhancement ratio in the tumour region

  • Clinical trials are still too scarce to draw firm conclusions on the cost effectiveness of CPT

  • Spot-scanning provides the best dose profiles compared with passive beam modulation, but requires corrections for treating moving targets

  • Research in radiobiology and combined therapies is necessary to define the optimum tumours to be treated with CPT

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dose-escalation for skull-base chordomas.
Figure 2: Measurement of a distal dose in anthropomorphic phantom (MATROSHKA), where a virtual brain tumour was treated with IMRT and CPT using either scanning or passive modulation in different facilities.
Figure 3: An example of single-fraction treatment plan for a patient with non-small-cell lung cancer.
Figure 4: Proton treatment plan at Massachusetts General Hospital for a 16-year-old boy with a co-secreting growth hormone and prolactin pituitary adenoma status post partial resection via transphenoidal approach presented with hypogonadism and right proptosis and accelerated vertical growth.
Figure 5: Proton treatment plan at Massachusetts General Hospital for 56-year-old man presenting with sixth nerve palsy and hypopituitarism, a benign meningioma.
Figure 6: Treatment of moving targets with scanning beams.
Figure 7: RBE versus LET from published experiments on in vitro cell lines.

Similar content being viewed by others

References

  1. Thariat, J., Hannoun-Levi, J. M., Sun Myint, A., Vuong, T. & Gérard, J. P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 10, 52–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Bortfeld, T. IMRT: a review and preview. Phys. Med. Biol. 51, R363–R379 (2006).

    Article  PubMed  Google Scholar 

  4. Lo, S. S. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat. Rev. Clin. Oncol. 7, 44–54 (2010).

    Article  PubMed  Google Scholar 

  5. Kavanagh, B. D., Timmerman, R. & Meyer, J. L. The expanding roles of stereotactic body radiation therapy and oligofractionation: toward a new practice of radiotherapy. Front. Radiat. Ther. Oncol. 43, 370–381 (2011).

    Article  PubMed  Google Scholar 

  6. Durante, M. & Loeffler, J. S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol. 7, 37–43 (2010).

    Article  PubMed  Google Scholar 

  7. Schardt, D., Elsässer, T. & Schulz-Ertner, D. Heavy-ion tumor therapy: physical and radiobiological benefits. Rev. Mod. Phys. 82, 383–425 (2010).

    Article  Google Scholar 

  8. Grün, R. et al. Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys. Med. Biol. 57, 7261–7274 (2012).

    Article  PubMed  Google Scholar 

  9. Particle Therapy Co-operative Group. PTCOG Home [online], (2013).

  10. The Advisory Board Company. Technology Insights. Proton Beam Therapy [online], (2011).

  11. De Ruysscher, D. et al. Charged particles in radiotherapy: a 5-year update of a systematic review. Radiother. Oncol. 103, 5–7 (2012).

    Article  PubMed  Google Scholar 

  12. Durante, M. Eighth Warren K. Sinclair keynote address: Heavy ions in therapy and space: benefits and risks. Health. Phys. 103, 532–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Castro, J. R. Results of heavy ion radiotherapy. Radiat. Environ. Biophys. 34, 45–48 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. DOE-NCI. Workshop on Ion Beam Therapy—Summary Report. January 9–11 [online], (2013).

  15. Allen, A. M. et al. An evidence based review of proton beam therapy: the report of ASTRO's emerging technology committee. Radiother. Oncol. 103, 8–11 (2012).

    Article  PubMed  Google Scholar 

  16. Suit, H. et al. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No. Radiother. Oncol. 86, 148–153 (2008).

    Article  PubMed  Google Scholar 

  17. Sheets, N. C. et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA 307, 1611–1620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vargas, C. et al. Dose-volume comparison of proton therapy and intensity-modulated radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 744–751 (2008).

    Article  PubMed  Google Scholar 

  19. Mendenhall, N. P., Schild, S. & Slater, J. Radiation therapy modalities for prostate cancer. JAMA 308, 450–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Deville, C., Ben-Josef, E. & Vapiwala, N. Radiation therapy modalities for prostate cancer. JAMA 308, 451 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Penson, D. F. Re: Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. J. Urol. 188, 2230–2231 (2012).

    PubMed  Google Scholar 

  22. Roelofs, E. et al. Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer. J. Thorac. Oncol. 7, 165–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Brada, M., Pijls-Johannesma, M. & De Ruysscher, D. Proton therapy in clinical practice: current clinical evidence. J. Clin. Oncol. 25, 965–970 (2007).

    Article  PubMed  Google Scholar 

  24. Schulz-Ertner, D. & Tsujii, H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 25, 953–964 (2007).

    Article  PubMed  Google Scholar 

  25. Brada, M., Pijls-Johannesma, M. & De Ruysscher, D. Current clinical evidence for proton therapy. Cancer J. 15, 319–324 (2009).

    Article  PubMed  Google Scholar 

  26. Tsujii, H. et al. Clinical advantages of carbon ion radiotherapy. New J. Phys. 10, 075009 (2008).

    Article  Google Scholar 

  27. Terasawa, T. et al. Systematic review: charged-particle radiation therapy for cancer. Ann. Intern. Med. 151, 556–565 (2009).

    Article  PubMed  Google Scholar 

  28. Tsujii, H. & Kamada, T. A review of update clinical results of carbon ion radiotherapy. Jpn J. Clin. Oncol. 42, 670–685 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ogino, T. Clinical evidence of particle beam therapy (proton). Int. J. Clin. Oncol. 17, 79–84 (2012).

    Article  PubMed  Google Scholar 

  30. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  31. Newhauser, W. D. & Durante, M. Assessing the risk of second malignancies after modern radiotherapy. Nat. Rev. Cancer 11, 438–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuhlthau, K. A. et al. Prospective study of health-related quality of life for children with brain tumors treated with proton radiotherapy. J. Clin. Oncol. 30, 2079–2086 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoppe, B. S. et al. Improving the therapeutic ratio in Hodgkin lymphoma through the use of proton therapy. Oncology (Williston Park) 26, 456–459 (2012).

    Google Scholar 

  34. Hodgson, D. C. Late effects in the era of modern therapy for Hodgkin lymphoma. Hematology Am. Soc. Hematol. Educ. Program 2011, 323–329 (2011).

    Article  PubMed  Google Scholar 

  35. Li, J. et al. Rationale for and preliminary results of proton beam therapy for mediastinal lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 81, 167–174 (2011).

    Article  PubMed  Google Scholar 

  36. Hoppe, B. S. et al. Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 82, 449–455 (2012).

    Article  Google Scholar 

  37. Combs, S. E. et al. Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base. Cancer 115, 1348–1355 (2009).

    Article  PubMed  Google Scholar 

  38. Combs, S. E. et al. Treatment of pediatric patients and young adults with particle therapy at the Heidelberg Ion Therapy Center (HIT): establishment of workflow and initial clinical data. Radiat. Oncol. 7, 170 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yock, T. I. & Caruso, P. A. Risk of second cancers after photon and proton radiotherapy: a review of the data. Health Phys. 103, 577–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, R. et al. Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient. Phys. Med. Biol. 58, 807–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paganetti, H. Assessment of the risk for developing a second malignancy from scattered and secondary radiation in radiation therapy. Health Phys. 103, 652–661 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winkfield, K. M. et al. Modeling intracranial second tumor risk and estimates of clinical toxicity with various radiation therapy techniques for patients with pituitary adenoma. Technol. Cancer Res. Treat. 10, 243–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Brenner, D. J. et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl Acad. Sci. USA 100, 13761–13766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L. & Bouffler, S. Assessing cancer risk of low-dose radiation. Nat. Rev. Cancer 9, 596–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Pearce, M. S. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380, 499–505 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brenner, D. J. & Hall, E. J. Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Hall, E. J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 1–7 (2006).

    Article  PubMed  Google Scholar 

  48. Kaderka, R. et al. Out-of-field dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol. 57, 5059–5074 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. La Tessa, C. et al. Out-of-field dose studies with an anthropomorphic phantom: comparison of X-rays and particle therapy treatments. Radiother. Oncol. 105, 133–138 (2012).

    Article  PubMed  Google Scholar 

  50. Münter, M. W. et al. Heavy ion radiotherapy during pregnancy. Fertil. Steril. 94, 2329.e5–7 (2010).

    Article  Google Scholar 

  51. Halperin, E. C. Particle therapy and treatment of cancer. Lancet Oncol. 7, 676–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Toyama, S. et al. Long-term results of carbon ion radiation therapy for locally advanced or unfavorably located choroidal melanoma: usefulness of CT-based 2-port orthogonal therapy for reducing the incidence of neovascular glaucoma. Int. J. Radiat. Oncol. Biol. Phys. 86, 270–276 (2013).

    Article  PubMed  Google Scholar 

  53. McGovern, S. L. & Mahajan, A. Progress in radiotherapy for pediatric sarcomas. Curr. Oncol. Rep. 14, 320–326 (2012).

    Article  PubMed  Google Scholar 

  54. Barker, J. L. Jr, Paulino, A. C., Feeney, S., McCulloch, T. & Hoffman, H. Locoregional treatment for adult soft tissue sarcomas of the head and neck: an institutional review. Cancer J. 9, 49–57 (2003).

    Article  PubMed  Google Scholar 

  55. Ciernik, I. F. et al. Proton-based radiotherapy for unresectable or incompletely resected osteosarcoma. Cancer 117, 4522–4530 (2011).

    Article  PubMed  Google Scholar 

  56. Laramore, G. E. The use of neutrons in cancer therapy: a historical perspective through the modern era. Semin. Oncol. 24, 672–685 (1997).

    CAS  PubMed  Google Scholar 

  57. Matsunobu, A. et al. Impact of carbon ion radiotherapy for unresectable osteosarcoma of the trunk. Cancer 118, 4555–4463 (2012).

    Article  PubMed  Google Scholar 

  58. Imai, R. et al. Effect of carbon ion radiotherapy for sacral chordoma: results of phase I–II and phase II clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 77, 1470–1476 (2010).

    Article  PubMed  Google Scholar 

  59. Nishida, Y. et al. Clinical outcome of sacral chordoma with carbon ion radiotherapy compared with surgery. Int. J. Radiat. Oncol. Biol. Phys. 79, 110–116 (2011).

    Article  PubMed  Google Scholar 

  60. Schulz-Ertner, D. et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int. J. Radiat. Oncol. Biol. Phys. 68, 449–457 (2007).

    Article  PubMed  Google Scholar 

  61. Nikoghosyan, A. V. et al. Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-study. BMC Cancer 10, 607 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nikoghosyan, A. V. et al. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study. BMC Cancer 10, 606 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Simone, C. B. 2nd et al. Comparison of intensity-modulated radiotherapy, adaptive radiotherapy, proton radiotherapy, and adaptive proton radiotherapy for treatment of locally advanced head and neck cancer. Radiother. Oncol. 101, 376–382 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. van der Water, T. A., Bijl, H. P., Schilstra, C., Pijls-Johannesma, M. & Langendijk, J. A. The potential benefit of radiotherapy with protons in head and neck cancer with respect to normal tissue sparing: a systematic review of literature. Oncologist 16, 366–377 (2011).

    Article  Google Scholar 

  65. Ramaekers, B. L. et al. Systematic review and meta-analysis of radiotherapy in various head and neck cancers: comparing photons, carbon-ions and protons. Cancer Treat. Rev. 37, 185–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Schulz-Ertner, D. et al. Therapy strategies for locally advanced adenoid cystic carcinomas using modern radiation therapy techniques. Cancer 104, 338–344 (2005).

    Article  PubMed  Google Scholar 

  67. Tanaka, S., Louis, D. N., Curry, W. T., Batchelor, T. T. & Dietrich, J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat. Rev. Clin. Oncol. 10, 14–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, I. & Aghi, M. K. New advances that enable identification of glioblastoma recurrence. Nat. Rev. Clin. Oncol. 6, 648–657 (2009).

    Article  PubMed  Google Scholar 

  69. Mizumoto, M. et al. Phase I/II trial of hyperfractionated concomitant boost proton radiotherapy for supratentorial glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 77, 98–105 (2010).

    Article  PubMed  Google Scholar 

  70. Combs, S. E. et al. Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial. BMC Cancer 10, 478 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Evers, P. et al. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer 10, 384 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lee, P. et al. Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int. J. Radiat. Oncol. Biol. Phys. http://dx.doi.org/10.1016/j.ijrobp.2013.01.009.

  75. Gupta, T. et al. Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma? J. Neurooncol. 109, 195–203 (2012).

    Article  PubMed  Google Scholar 

  76. Blechacz, B. & Mishra, L. Hepatocellular carcinoma biology. Recent Results Cancer Res. 190, 1–20 (2013).

    Article  PubMed  Google Scholar 

  77. El-Seragh, H. B. Hepatocellular carcinoma. N. Eng. J. Med. 365, 1118–1127 (2011).

    Article  Google Scholar 

  78. Bush, D. A., Hillebrand, D. J., Slater, J. M. & Slater, J. D. High-dose proton beam radiotherapy of hepatocellular carcinoma: preliminary results of a phase II trial. Gastroenterology 127 (Suppl. 1), S189–S193 (2004).

    Article  PubMed  Google Scholar 

  79. Fukumitsu, N. et al. A prospective study of hypofractionated proton beam therapy for patients with hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 74, 831–836 (2009).

    Article  PubMed  Google Scholar 

  80. Imada, H. et al. Comparison of efficacy and toxicity of short-course carbon ion radiotherapy for hepatocellular carcinoma depending on their proximity to the porta hepatis. Radiother. Oncol. 96, 231–235 (2010).

    Article  PubMed  Google Scholar 

  81. Combs, S. E. et al. Phase I study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: the PROMETHEUS-01 trial. BMC Cancer 11, 67 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stathis, A. & Moore, M. J. Advanced pancreatic carcinoma: current treatment and future challenges. Nat. Rev. Clin. Oncol. 7, 163–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Terashima, K. et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother. Oncol. 103, 25–31 (2012).

    Article  PubMed  Google Scholar 

  84. Shinoto, M. et al. Phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer 119, 45–51 (2013).

    Article  PubMed  Google Scholar 

  85. Nielsen, M. B., Rasmussen, P. C., Lindegaard, J. C. & Laurberg, S. A 10-year experience of total pelvic exenteration for primary advanced and locally recurrent rectal cancer based on a prospective database. Colorectal Dis. 14, 1076–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Mobaraki, A., Ohno, T., Yamada, S., Sakurai, H. & Nakano, T. Cost-effectiveness of carbon ion radiation therapy for locally recurrent rectal cancer. Cancer Sci. 101, 1834–1839 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Combs, S. E. et al. Phase I/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial. BMC Cancer 12, 137 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pécuchet, N., Fournie, L. S. & Oudard, S. New insights into the management of renal cell cancer. Oncology 84, 22–31 (2013).

    Article  PubMed  CAS  Google Scholar 

  89. Nomiya, T. et al. Carbon ion radiation therapy for primary renal cell carcinoma: initial clinical experience. Int. J. Radiat. Oncol. Biol. Phys. 72, 828–833 (2008).

    Article  PubMed  Google Scholar 

  90. Sisterson, J. Ion beam therapy in 2004. Nucl. Instr. Meth. B 241, 713–716 (2005).

    Article  CAS  Google Scholar 

  91. Yu, J. B. et al. Proton versus intensity-modulated radiotherapy for prostate cancer: patterns of care and early toxicity. J. Natl Cancer Inst. 105, 25–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Zietman, A. L. et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294, 1233–1239 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Talcott, J. A. et al. Patient-reported long-term outcomes after conventional and high-dose combined proton and photon radiation for early prostate cancer. JAMA 303, 1046–1053 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Zietman, A. L. et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09. J. Clin. Oncol. 28, 1106–1111 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hoppe, B. S. et al. Proton therapy for prostate cancer. Oncology (Williston Park) 25, 644–650 (2011).

    Google Scholar 

  96. Henderson, R. H. et al. Urinary functional outcomes and toxicity five years after proton therapy for low- and intermediate-risk prostate cancer: results of two prospective trials. Acta Oncol. 52, 463–469 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gray, P. J. & Efstathiou, J. A. Proton beam radiation therapy for prostate cancer-is the hype (and the cost) justified? Curr. Urol. Rep. http://dx.doi.org/10.1007/s11934-013-0320–2.

  98. Vogelius, I. R. & Bentzen, S. M. Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: bad news, good news, or no news? Int. J. Radiat. Oncol. Biol. Phys. 85, 89–94 (2013).

    Article  PubMed  Google Scholar 

  99. Brenner, D. J. Toward optimal external-beam fractionation for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 48, 315–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Kil, W. J. et al. Hypofractionated passively scattered proton radiotherapy for low- and intermediate-risk prostate cancer is not associated with post-treatment testosterone suppression. Acta Oncol. 52, 492–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ishikawa, H. et al. Carbon-ion radiation therapy for prostate cancer. Int. J. Urol. 19, 296–305 (2012).

    Article  PubMed  Google Scholar 

  102. Zhang, X. et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int. J. Radiat. Oncol. Biol. Phys. 77, 357–366 (2010).

    Article  PubMed  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  104. Fridberg, S. & Rudén, B. I. Hypofractionation in radiotherapy. An investigation of injured Swedish women, treated for cancer of the breast. Acta Oncol. 48, 822–831 (2009).

    Article  Google Scholar 

  105. Freedman, G. M. Hypofractionated radiation therapy in the treatment of early-stage breast cancer. Curr. Oncol. Rep. 14, 12–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Appelt, A. L., Vogelius, I. R. & Bentzen, S. M. Modern hypofractionation schedules for tangential whole breast irradiation decrease the fraction size-corrected dose to the heart. Clin. Oncol. (R. Coll. Radiol.) 25, 147–152 (2013).

    Article  CAS  Google Scholar 

  107. Bush, D. A. et al. Partial breast irradiation delivered with proton beam: results of a phase II trial. Clin. Breast Cancer 11, 241–245 (2011).

    Article  PubMed  Google Scholar 

  108. Bert, C., Engenhart-Cabillic, R. & Durante, M. Particle therapy for noncancer diseases. Med. Phys. 39, 1716–1727 (2012).

    Article  PubMed  Google Scholar 

  109. Kjellberg, R. N., Hanamura, T., Davis, K. R., Lyons, S. L. & Adams, R. D. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N. Engl. J. Med. 309, 269–274 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. Barker, F. G. 2nd et al. Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations. J. Neurosurg. 99, 254–263 (2003).

    Article  PubMed  Google Scholar 

  111. Chen, C. C., Chapman, P., Petit, J. & Loeffler, J. Proton radiosurgery in neurosurgery. Neurosurg. Focus 23, E5 (2007).

    PubMed  Google Scholar 

  112. Halasz, L. M. et al. Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 81, 1428–1435 (2011).

    Article  PubMed  Google Scholar 

  113. Loeffler, J. S. & Shih, H. A. Radiation therapy in the management of pituitary adenomas. J. Clin. Endocrinol. Metab. 96, 1992–2003 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Lazzara, B. M. et al. Cyberknife radiosurgery in treating trigeminal neuralgia. J. Neurointerv. Surg. 5, 81–85 (2013).

    Article  PubMed  Google Scholar 

  115. Kishan, A. U., Modjtahedi, B. S., Morse, L. S. & Lee, P. Radiation therapy for neovascular age-related macular degeneration. Int. J. Radiat. Oncol. Biol. Phys. 85, 583–597 (2013).

    Article  PubMed  Google Scholar 

  116. Terasawa, T. et al. Systematic review: comparative effectiveness of radiofrequency catheter ablation for atrial fibrillation. Ann. Intern. Med. 151, 191–202 (2009).

    Article  PubMed  Google Scholar 

  117. Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909 (2010).

  118. Freeman, T. Will protons gradually replace photons? Medical Physics Web [online], (2012).

    Google Scholar 

  119. Korreman, S. et al. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother. Oncol. 94, 129–144 (2010).

    Article  PubMed  Google Scholar 

  120. Korreman, S. S. Motion in radiotherapy: photon therapy. Phys. Med. Biol. 57, R161–R191 (2012).

    Article  PubMed  CAS  Google Scholar 

  121. Bert, C. & Durante, M. Motion in radiotherapy: particle therapy. Phys. Med. Biol. 56, R113–R144 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Silari, M. Applications of particle accelerators in medicine. Radiat. Prot. Dosim. 146, 440–450 (2011).

    Article  CAS  Google Scholar 

  123. Bartal, T. et al. Focusing of short-pulse high-intensity laser-accelerated proton beams. Nat. Phys. 8, 139–142 (2012).

    Article  CAS  Google Scholar 

  124. Robin, D. S. et al. Superconducting toroidal combined-function magnet for a compact ion beam cancer therapy gantry. Nucl. Instrum. Meth. 659, 484–493 (2011).

    Article  CAS  Google Scholar 

  125. Miyamoto, T. et al. Curative treatment of Stage I non-small cell lung cancer with carbon ion beams using a hypofractionated regimen. Int. J. Radiat. Oncol. Biol. Phys. 67, 750–758 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Graeff, C., Durante, M. & Bert, C. Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med. Phys. 39, 6004–6013 (2012).

    Article  PubMed  Google Scholar 

  127. Knopf, A. et al. Special report: workshop on 4D-treatment planning in actively scanned particle therapy—recommendations, technical challenges, and future research directions. Med. Phys. 37, 4608–4614 (2010).

    Article  PubMed  Google Scholar 

  128. Riboldi, M., Orecchia, R. & Baroni, G. Real-time tumour tracking in particle therapy: technological developments and future perspectives. Lancet Oncol. 13, e383–e391 (2012).

    Article  PubMed  Google Scholar 

  129. Mumot, M. et al. Proton range verification using a range probe: definition of concept and initial analysis. Phys. Med. Biol. 55, 4771–4782 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Durante, M. & Stöcker, H. Relativistic protons for image-guided stereotactic radiosurgery. J. Phys. Conf. Ser. 373, 012016 (2012).

    Google Scholar 

  131. Friedrich, T., Scholz, U., Elsässer, T., Durante, M. & Scholz, M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J. Radiat. Res. http://dx.doi.org/10.1093/jrr/rrs114.

  132. Paganetti, H. et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 407–421 (2002).

    Article  PubMed  Google Scholar 

  133. Frese, M. C. et al. Application of constant vs. variable relative biological effectiveness in treatment planning of intensity-modulated proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 79, 80–88 (2011).

    Article  PubMed  Google Scholar 

  134. Li, Q. & Sihver, L. Therapeutic techniques applied in the heavy-ion therapy at IMP. Nucl. Instr. Meth. B 269, 664–670 (2011).

    Article  CAS  Google Scholar 

  135. Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Keith, B. & Simon, M. C. Hypoxia-inducible factors, stem cells, and cancer. Cell 129, 465–472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pignalosa, D. & Durante, M. Overcoming resistance of cancer stem cells. Lancet Oncol. 13, e187–e188 (2012).

    Article  PubMed  Google Scholar 

  138. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2011).

    Article  PubMed  CAS  Google Scholar 

  139. Cui, X. et al. Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays. Cancer Res. 71, 3676–3687 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Oonishi, K. et al. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother. Oncol. 105, 258–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Quan, Y. et al. Accumulation efficiency of cancer stem-like cells post γ-ray and proton irradiation. Nucl. Instr. Meth. B 286, 341–345 (2012).

    Article  CAS  Google Scholar 

  142. Fu, Q. et al. Response of cancer stem-like cells and non-stem cancer cells to proton and γ-ray irradiation. Nucl. Instr. Meth. B 286, 346–350 (2012).

    Article  CAS  Google Scholar 

  143. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Deng, X. et al. Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322, 110–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yamada, Y. et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int. J. Radiat. Oncol. Biol. Phys. 71, 484–490 (2008).

    Article  PubMed  Google Scholar 

  146. Takahashi, Y. et al. Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res. 63, 4253–4257 (2003).

    CAS  PubMed  Google Scholar 

  147. Combs, S. E. et al. In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells. Radiat. Oncol. 7, 9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Combs, S. E. et al. Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. Int. J. Radiat. Biol. 85, 126–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Kirkwood, J. M. et al. Immunotherapy of cancer in 2012. CA Cancer J. Clin. 62, 309–335 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kaminski, J. M. The controversial abscopal effect. Cancer Treat. Rev. 31, 159–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hiniker, S. M. et al. Abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 2035 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Shiraishi, K. et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1 alpha. Clin. Cancer Res. 14, 1159–1166 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Formenti, S. C. & Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 10, 718–726 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Formenti, S. C. & Demaria, S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J. Natl Cancer Inst. 105, 256–265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ogata, T. et al. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res. 65, 113–120 (2005).

    CAS  PubMed  Google Scholar 

  157. Ogata, T. et al. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol-3-kinase/Akt signaling pathway. J. Radiat. Res. 52, 374–379 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Matsunaga, A. et al. Carbon-ion beam treatment induces systemic antitumor immunity against murine squamous cell carcinoma. Cancer 116, 3740–3748 (2010).

    Article  PubMed  CAS  Google Scholar 

  159. Horsman, M. R., Mortensen, L. S., Petersen, J. B., Busk, M. & Overgaard, J. Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 9, 674–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Ogawa, K. et al. Radiotherapy targeting cancer stem cells: current views and future perspectives. Anticancer Res. 33, 747–754 (2013).

    CAS  PubMed  Google Scholar 

  161. Zelefsky, M. J. et al. Tumor control outcomes after hypofractionated and single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases from renal cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 82, 1744–1788 (2012).

    Article  PubMed  Google Scholar 

  162. GSI Helmholtzzentrum für Schwerionenforschung. PIDE Project [online], (2013).

Download references

Acknowledgements

We thank Michael Scholz, Christoph Bert, Christian Graeff, and Thomas Friedrich for providing some of the figures.

Author information

Authors and Affiliations

Authors

Contributions

M. Durante researched the data for the article and wrote the article. Both authors made a substantial contribution to discussion of content and J. S. Loeffler reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Marco Durante.

Ethics declarations

Competing interests

J. S. Loeffler declares he is on the Scientific Advisory Board of Procure. M. Durante declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeffler, J., Durante, M. Charged particle therapy—optimization, challenges and future directions. Nat Rev Clin Oncol 10, 411–424 (2013). https://doi.org/10.1038/nrclinonc.2013.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing