Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomarker enrichment strategies: matching trial design to biomarker credentials

Key Points

  • Many new anticancer treatments are molecular targeted agents and only benefit a subgroup of patients within a histologically defined cancer

  • Heterogeneity of treatment effects requires development of biomarkers to identify patients who could benefit from new treatments

  • Phase III trial designs for evaluation of targeted treatments use biomarker-driven enrichment strategies that range from limiting evaluation to the biomarker-positive subgroup to sequential testing of biomarker-positive, biomarker-negative and overall populations

  • To provide compelling evidence for informing clinical practice, the choice of an appropriate phase III trial design should be guided by the strength of the biomarker's credentials

Abstract

The use of biomarkers to identify patients who can benefit from treatment with a specific anticancer agent has the potential to both improve patient care and accelerate drug development. The development of targeted agents and their accompanying biomarkers frequently occurs contemporaneously, and confidence in a putative biomarker's performance might, therefore, be insufficient to restrict the definitive testing of a new agent to the subgroup of biomarker-positive patients. This Review considers which clinical trial designs and analysis strategies are appropriate for use in phase III, biomarker-driven, randomized clinical trials, on the basis of pre-existing evidence that the biomarker can successfully identify patients who will respond to the treatment in question. The types of interim monitoring that are appropriate for these trials are also discussed. In addition, enrichment strategies based on the use of prognostic biomarkers to separate a population into subgroups with better and worse outcomes, regardless of treatment, are described. Finally, the possibility of formally using a biomarker during phase II drug development, to select what type of biomarker-driven strategy should be used in the phase III trial, is discussed.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Biomarker-driven phase III clinical trial designs.
Figure 2: Analysis strategies with biomarker-stratified phase III clinical trials.
Figure 3: Analysis strategies with biomarker-stratified phase III clinical trials.

References

  1. U.S. Department of Health and Human Services. Enrichment strategies for clinical trials to support approval of human drugs and biological products [online], (2012).

  2. Temple, R. Enrichment of clinical study populations. Clin. Pharmacol. Ther. 88, 774–778 (2010).

    CAS  Article  PubMed  Google Scholar 

  3. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    CAS  PubMed  Google Scholar 

  4. Jimeno, A., Messersmith, W. A., Hirsch, F. R., Franklin, W. A. & Eckhardt, S. G. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J. Clin. Oncol. 27, 1130–1136 (2009).

    CAS  Article  PubMed  Google Scholar 

  5. Van Custem, E. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumour KRAS and BRAF mutation status. J. Clin. Oncol. 29, 2011–2019 (2011).

    Article  Google Scholar 

  6. Leaf, C. Do clinical trials work? New York Times [online], (13 July 2013).

    Google Scholar 

  7. Williams, P. M., Lively, T. G., Jessup, J. M. & Conley, B. A. Bridging the gap: moving predictive and prognostic assays from research to clinical use. Clin. Cancer Res. 18, 1531–1539 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Simon, R. M., Paik, S. & Hayes, D. F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl Cancer. Inst. 101, 1446–1452 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Polley, M. Y. et al. Statistical and practical considerations for clinical evaluation of predictive biomarkers. J. Natl Cancer Inst. http://dx.doi.org/10.1093/jnci/djt282.

  10. Simon, R. & Maitournam, A. Evaluating the efficiency of targeted designs for randomized clinical trials. Clin. Cancer Res. 10, 6759–6763 (2004).

    CAS  Article  PubMed  Google Scholar 

  11. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAFV600E mutation. N. Engl. J. Med. 364, 2507–16 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    CAS  Article  PubMed  Google Scholar 

  13. Mandrekar, S. J. & Sargent, D. J. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27, 4027–4034 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paik, S., Kim, C. & Wolmark, N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N. Engl. J. Med. 358, 1409–1411 (2008).

    CAS  Article  PubMed  Google Scholar 

  15. Perez, E. A. et al. HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J. Clin. Oncol. 28, 4307–4315 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Freidlin, B., McShane, L. M. & Korn, E. L. Randomized clinical trials with biomarkers: design issues. J. Natl Cancer Inst. 102, 152–160 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Douillard, J. Y. et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol. 28, 4697–4705 (2010).

    CAS  Article  PubMed  Google Scholar 

  18. Johnston, S. et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J. Clin. Oncol. 27, 5538–5546 (2009).

    CAS  Article  PubMed  Google Scholar 

  19. Cappuzzo, F. et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol. 11, 521–529 (2010).

    CAS  Article  PubMed  Google Scholar 

  20. Rothmann, M. D., Zhang, J. J., Lu, L. & Fleming, T. R. Testing in a prespecified subgroup and the intent-to-treat population. Drug Inf. J. 46, 175–179 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karuri, S. W. & Simon, R. A two-stage Bayesian design for co-development of new drugs and companion diagnostics. Stat. Med. 31, 901–914 (2012).

    Article  PubMed  Google Scholar 

  22. Freidlin, B., Korn, E. L. & Gray, R. Marker sequential test (MaST) design. Clin. Trials. http://dx.doi.org/10.1177/1740774513503739.

  23. Freidlin, B., Sun, Z., Gray, R. & Korn, E. L. Phase III clinical trials that integrate treatment and biomarker evaluation. J. Clin. Oncol. 31, 3158–3161 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Simon, R. The use of genomics in clinical trial design. Clin. Cancer Res. 14, 5984–5993 (2008).

    Article  PubMed  Google Scholar 

  25. Jiang, W., Freidlin, B. & Simon, R. Biomarker-adaptive threshold design: a procedure for evaluating treatment with possible biomarker-defined subset effect. J. Natl Cancer Inst. 99, 1036–1043 (2007).

    Article  PubMed  Google Scholar 

  26. Freidlin, B. & Simon, R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin. Cancer Res. 11, 7872–7878 (2005).

    CAS  Article  PubMed  Google Scholar 

  27. McShane, L. M. et al. Criteria for the use of omics-based predictors in clinical trials: explanation and elaborations. BMC Med. 11, 220 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Green, S., Benedetti, J., Smith, A. & Crowley, J. Clinical Trials in Oncology 2nd edn 97–122 (Chapman & Hall/CRC Press, 2002).

    Google Scholar 

  29. Korn, E. L. & Freidlin, B. in Oncology Clinical Trials Ch. 19 (eds Kelly, W. K. & Halabi, S.) 163–177 (Demos Medical Publishing, 2010).

    Google Scholar 

  30. Liu, A., Liu, C., Li, Q., Yu, K. F. & Yuan, V. W. A threshold sample-enrichment approach in a clinical trial with heterogeneous subpopulations. Clin. Trials 7, 537–545 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rubinstein, L. V. et al. Design issues of randomized phase II trials and a proposal for phase II screening trials. J. Clin. Oncol. 23, 7199–7206 (2005).

    Article  PubMed  Google Scholar 

  32. Amatu, A. et al. Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin. Cancer Res. 19, 2265–2272 (2013).

    CAS  Article  PubMed  Google Scholar 

  33. Edelman, M. J. et al. Randomized phase II study of ixabepilone or paclitaxel plus carboplatin in patients with non-small-cell lung cancer prospectively stratified by β-3 tubulin status. J. Clin. Oncol. 31, 1990–1996 (2013).

    CAS  Article  PubMed  Google Scholar 

  34. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Spigel, D. R. et al. Treatment rationale study design for the MetLung trial: a randomized, double-blind phase III study of onartuzumab (MetMAb) in combination with erlotinib versus erlotinib alone in patients who have received standard chemotherapy for stage IIIB or IV Met-positive non-small-cell lung cancer. Clin. Lung Cancer 13, 500–504 (2012).

    CAS  Article  PubMed  Google Scholar 

  36. Jones, C. L. & Holmgren, E. An adaptive Simon two-stage design for phase 2 studies of targeted therapies. Contemp. Clin. Trials 28, 654–661 (2007).

    Article  PubMed  Google Scholar 

  37. Freidlin, B., McShane, L. M., Polley, M. Y. & Korn, E. L. Randomized phase II trial designs with biomarkers. J. Clin. Oncol. 30, 3304–3309 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hayes, D. F. Targeting adjuvant chemotherapy: a good idea that needs to be proven! J. Clin. Oncol. 30, 1264–1267 (2012).

    CAS  Article  PubMed  Google Scholar 

  39. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    CAS  Article  PubMed  Google Scholar 

  40. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, oestrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    CAS  Article  PubMed  Google Scholar 

  41. Sparano, J. A. TAILORx: trial assigning individualized options for treatment (Rx). Clin. Breast Cancer 7, 347–350 (2006).

    Article  PubMed  Google Scholar 

  42. Ramsey, S. D. et al. Integrating comparative effectiveness design elements and endpoints into a phase III, randomized clinical trial (SWOG S1007) evaluating Oncotype DX-guided management for women with breast cancer involving lymph nodes. Contemp. Clin. Trials 34, 1–9 (2013).

    Article  PubMed  Google Scholar 

  43. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    CAS  Article  PubMed  Google Scholar 

  44. Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366, 109–119 (2012).

    CAS  Article  PubMed  Google Scholar 

  45. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    CAS  Article  PubMed  Google Scholar 

  46. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    CAS  Article  PubMed  Google Scholar 

  47. Peeters, M. et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol. 28, 4706–4713 (2010).

    CAS  Article  PubMed  Google Scholar 

  48. Sargent, D. J. & Mandrekar, S. J. Statistical issues in the validation of prognostic, predictive, and surrogate biomarkers. Clin. Trials 10, 647–652 (2013).

    Article  PubMed  Google Scholar 

  49. Herbst, R. S. et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomized, phase 3 trial. Lancet Oncol. 11, 619–626 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Scagliotti, G. V. et al. International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J. Clin. Oncol. 30, 2829–2836 (2012).

    CAS  Article  PubMed  Google Scholar 

  51. Redman, M. W. et al. Design of a phase III clinical trial with prospective biomarker validation: SWOG S0819. Clin. Cancer Res. 18, 4004–4012 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Boyer, M. et al. Rationale and study design for ARCHER: a randomized, double-blind, phase III study of dacomitinib versus erlotinib for advanced non-small-cell lung cancer. Clin. Invest. 3, 29–35 (2013).

    CAS  Article  Google Scholar 

  53. Miles, D. et al. MERiDiAN: A phase III, randomized, double-blind study of efficacy, safety, and associated biomarker of bevacizumab plus paclitaxel compared with paclitaxel plus placebo, as first-line therapy of patients with HER2-negative breast cancer [abstract]. J. Clin. Oncol. 31 (Suppl.), TPS1142 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of this article, including researching the data for the article, discussions of its content, writing the article, and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Boris Freidlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freidlin, B., Korn, E. Biomarker enrichment strategies: matching trial design to biomarker credentials. Nat Rev Clin Oncol 11, 81–90 (2014). https://doi.org/10.1038/nrclinonc.2013.218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.218

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing