Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Appraising iniparib, the PARP inhibitor that never was—what must we learn?

Key Points

  • Iniparib is not a bona fide inhibitor of poly(ADP-ribose) polymerase (PARP), so the clinical results in this context should not be extrapolated to other PARP inhibitors in development

  • Preclinical data on iniparib did not sufficiently elucidate the mechanism of action of this agent before clinical trials were initiated

  • Phase I trials should provide proof of mechanism and, ideally, proof of concept, in expansion cohorts to test biological hypotheses; early clinical trials of iniparib lacked proof of mechanism

  • Selection of a patient population, and implementation and validation of predictive biomarkers, are critical to optimize drug development

  • Randomized phase II trials have a significant rate of false positivity, so promising results should be interpreted prudently until other confirmatory studies are reported

  • Preclinical and clinical studies with negative results and efforts evaluating reproducibility of previously published data should be publically available to minimize the risk of publication bias

Abstract

Several drugs targeting poly(ADP-ribose) polymerase (PARP) enzymes are under development. Responses have been observed in patients with germline mutations in BRCA1 and BRCA2, with further data supporting antitumour activity of PARP inhibitors in sporadic ovarian cancer. Strategies to identify other predictive biomarkers remain under investigation. Iniparib was purported to be a PARP inhibitor that showed promising results in randomized phase II trials in patients with triple-negative breast cancer. Negative results from a phase III study in this disease setting, however, tempered enthusiasm for this agent. Recently, data from in vitro experiments suggest that iniparib is not only structurally distinct from other described PARP inhibitors, but is also a poor inhibitor of PARP activity. In this context, the negative iniparib phase III data might have erroneously promulgated the notion that PARP inhibition is not an effective therapeutic strategy. Here, we scrutinize the development of iniparib from preclinical studies to registration trials, and identify and discuss the pitfalls in the development of anticancer drugs to prevent future late-stage trial failures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Confronting the Pharmacological Audit Trail (PhAT).

Similar content being viewed by others

References

  1. Arrowsmith, J. Trial watch: phase III and submission failures: 2007–2010. Nat. Rev. Drug Discov. 10, 87 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Arrowsmith, J. Trial watch: phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10, 328–329 (2011).

    Article  CAS  Google Scholar 

  3. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  4. Collier, R. Rapidly rising clinical trial costs worry researchers. CMAJ 180, 277–278 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bach, P. B. Limits on Medicare's ability to control rising spending on cancer drugs. N. Engl. J. Med. 360, 626–633 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan, R. et al. Delivering aff ordable cancer care in high-income countries. Lancet Oncol. 12, 933–980 (2011).

    Article  PubMed  Google Scholar 

  7. Amiri-Kordestani, L. & Fojo, T. Why do phase III clinical trials in oncology fail so often? J. Natl Cancer Inst. 104, 568–569 (2012).

    Article  PubMed  Google Scholar 

  8. Hutchinson, L. & Kirk, R. High drug attrition rates—where are we going wrong? Nat. Rev. Clin. Oncol. 8, 189–190 (2011).

    Article  PubMed  Google Scholar 

  9. Ocana, A., Pandiella, A., Siu, L. L. & Tannock, I. F. Preclinical development of molecular-targeted agents for cancer. Nat. Rev. Clin. Oncol. 8, 200–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  11. LoRusso, P. M. et al. Translating clinical trials into meaningful outcomes. Clin. Cancer Res. 16, 5951–5955 (2010).

    Article  PubMed  Google Scholar 

  12. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Russo, A. L. et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly(ADP-ribose) polymerase inhibitor E7016. Clin. Cancer Res. 15, 607–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calabrese, C. R. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst. 96, 56–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Senra, J. M. et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol. Cancer Ther. 10, 1949–1958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Treszezamsky, A. D. et al. BRCA1- and BRCA2-deficient cells are sensitive to etoposide-induced DNA double-strand breaks via topoisomerase II. Cancer Res. 67, 7078–7081 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Patel, A. G., De Lorenzo, S. B., Flatten, K. S., Poirier, G. G. & Kaufmann, S. H. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin. Cancer Res. 18, 1655–1662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chuang, H. C., Kapuriya, N., Kulp, S. K., Chen, C.-S. & Shapiro, C. L. Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res. Treat. 134, 649–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chuang, A. J., Killam, K. F. Jr, Chuang, R. Y., Mendeleyev, J. & Kun, E. Comparison of the cytotoxic and antiretroviral effects of 3-nitrosobenzamide and 4-iodo-3-nitrobenzamide. Proc. West. Pharmacol. Soc. 37, 117–119 (1994).

    CAS  PubMed  Google Scholar 

  23. Mendeleyev, J., Kirsten, E., Hakam, A., Buki, K. G. & Kun, E. Potential chemotherapeutic activity of 4-iodo-3-nitrobenzamide. Metabolic reduction to the 3-nitroso derivative and induction of cell death in tumor cells in culture. Biochem. Pharmacol. 50, 705–714 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Kirsten, E. & Kun, E. Cancer cell selectivity of 5-iodo-6-aminobenzopyrone (INH2BP) and methyl-3,5-diiodo-4(4′-methoxyphenoxy) benzoate (DIME). Int. J. Mol. Med. 5, 279–281 (2000).

    CAS  PubMed  Google Scholar 

  25. Bauer, P. I. et al. Anti-cancer action of 4-iodo-3-nitrobenzamide in combination with buthionine sulfoximine: inactivation of poly(ADP-ribose) polymerase and tumor glycolysis and the appearance of a poly(ADP-ribose) polymerase protease. Biochem. Pharmacol. 63, 455–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, X. et al. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin. Cancer Res. 18, 510–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Kun, E., Mendeleyev, J., Hakam, A. & Kirsten, E. Enzymatic mechanism of the tumoricidal action of 4-iodo-3-nitrobenzamide. Mol. Med. Rep. 2, 739–742 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Ossovskaya, V. et al. BSI-201 enhances the activity of multiple classes of cytotoxic agents and irradiation in triple negative breast cancer [abstract]. Proc. 100th Annu. Meeting Am. Assoc. Cancer Res. a5552 (2009).

  29. Ossovskaya, V. et al. The chemosensitizing properties of iniparib in combination with DNA-damaging agents in the MDA-MB-468(−) triple-negative breast cancer (TNBC) cell line [abstract]. Cancer Res. 71 (Suppl.), aLB-401 (2011).

    Google Scholar 

  30. Ossovskaya, V. et al. Cell cycle effects of iniparib, a PARP inhibitor, in combination with gemcitabine and carboplatin in the MDA-MB-468(−) triple-negative breast cancer (TNBC) cell line [abstract P5-06-09]. Cancer Res. 70 (Suppl.), aP5-06-09 (2010).

    Google Scholar 

  31. Cotter, M. B. et al. Preclinical evaluation of PARP inhibition in breast cancer: Comparative effetiveness of olaparib and iniparib [abstract]. J. Clin. Oncol. 30 (Suppl.), a1042 (2012).

    Article  CAS  Google Scholar 

  32. Patel, A. G., De Lorenzo, S. B., Flatten, K. S., Poirier, G. G. & Kaufmann, S. H. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin. Cancer Res. 18, 1655–1662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Licht, S. et al. Mechanism of action of iniparib: stimulation of reactive oxygen species (ROS) production in an iniparib-sensitive breast cancer cell line [abstract]. Mol. Cancer Ther. 10 (Suppl.), a226 (2011).

    Google Scholar 

  34. Kopetz, S. et al. First in human phase I study of BSI-201, a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in subjects with advanced solid tumors [abstract]. J. Clin. Oncol. 26 (Suppl.), a3577 (2008).

    Article  Google Scholar 

  35. Verweij, J. et al. Pharmacokinetics and metabolism of iniparib for the treatment of metastatic triple-negative breast cancer (TNBC) [abstract]. Mol. Cancer Ther. 10 (Suppl.), aA134 (2011).

    Article  CAS  Google Scholar 

  36. Mahany, J. J. et al. A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors [abstract]. J. Clin. Oncol. 26 (Suppl.), a3579 (2008).

    Article  Google Scholar 

  37. Mita, A. C. et al. A phase IB trial of iniparib (BSI-201) in combination with carboplatin (C)/paclitaxel (P) in patients with non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 29 (Suppl.), a7570 (2011).

    Article  Google Scholar 

  38. Sandhu, S. K. et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutations carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14, 882–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Rajan, A. et al. A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin. Cancer Res. 18, 2344–2351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calvert, A. H. et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J. Clin. Oncol. 7, 1748–1756 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Llombart, A. et al. SOLTI NeoPARP: A phase II, randomized study of two schedules of iniparib plus paclitaxel and paclitaxel alone as neoadjuvant therapy in patients with triple-negative breast cancer (TNBC) [abstract]. J. Clin. Oncol. 30 (Suppl.), a1011 (2012).

    Google Scholar 

  43. Telli, M. L. et al. PrECOG 0105: Final efficacy results from a phase II study of gemcitabine (G) and carboplatin (C) plus iniparib (BSI-201) as neoadjuvant therapy for triple-negative (TN) and BRCA1/2 mutation-associated breast cancer [abstract]. J. Clin. Oncol. 31 (Suppl.), a1003 (2013).

    Article  CAS  Google Scholar 

  44. O'Shaughnessy, J. et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC) [abstract]. J. Clin. Oncol. 29 (Suppl.), a1007 (2011).

    Article  Google Scholar 

  45. Penson, R. T. et al. A phase II trial of iniparib (BSI-201) in combination with gemcitabine/carboplatin (GC) in patients with platinum-sensitive recurrent ovarian cancer [abstract]. J. Clin. Oncol. 29 (Suppl.), a5004 (2011).

    Article  Google Scholar 

  46. Birrer, M. J. et al. A phase II trial of iniparib (BSI-201) in combination with gemcitabine/carboplatin (GC) in patients with platinum-resistant recurrent ovarian cancer [abstract]. J. Clin. Oncol. 29 (Suppl.), a5005 (2011).

    Article  Google Scholar 

  47. Novello, S. et al. Results of a phase 2 study of gemcitabine/cisplatin/iniparib (GCI) versus gemcitabine/cisplatin (GC) in patients with advanced NSCLC [abstract]. Eur. J. Cancer 47 (Suppl.), a9006 (2011).

    Article  Google Scholar 

  48. Blakeley, J. O. et al. Poly (ADP-ribose) polymerase-1 (PARP1) inhibitor BSI-201 in combination with temozolomide (TMZ) in malignant glioma [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a2012 (2010).

    Article  Google Scholar 

  49. Aghajanian, C., Sill, M. W., Secord, A. A., Powell, M. A. & Steinhoff, M. Iniparib plus paclitaxel and carboplatin as initial treatment of advanced or recurrent uterine carcinosarcoma: a Gynecologic Oncology Group Study. Gynecol. Oncol. 126, 424–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. US National Library of Medicine. Clinicaltrials.gov [online], (2012).

  51. Sanofi. Press release: Sanofi provides update on phase 3 studies of two investigational compounds [online], (2013).

  52. Begley, C. G. & Ellis, L. Drug development: Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  Google Scholar 

  53. Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10, 712 (2011).

    Article  CAS  Google Scholar 

  54. Ocana, A., Amir, E., Yeung, C., Seruga, B. & Tannock, I. F. How valid are claims for synergy in published clinical studies? Ann. Oncol. 23, 2161–2166 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Workman, P. Challenges of PK/PD measurements in modern drug development. Eur. J. Cancer 38, 2189–2193 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Sandhu, S. K., Yap, T. A. & de Bono, J. S. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur. J. Cancer 46, 9–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Yap, T. A., Sandhu, S. K., Workman, P. & de Bono, J. S. Envisioning the future of early anticancer drug development. Nat. Rev. Cancer 10, 514–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. de Bono, J. S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Postel-Vinay, S. et al. Clinical benefit in phase-I trials of novel molecularly targeted agents: does dose matter? Br. J. Cancer 100, 1373–1378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  Google Scholar 

  65. Rakha, E. A., Reis-Filho, J. S. & Ellis, I. O. Basal-like breast cancer: a critical review. J. Clin. Oncol. 26, 2568–2581 (2008).

    Article  PubMed  Google Scholar 

  66. Ossovskaya, V., Koo, I. C., Kaldjian, E. P., Alvares, C. & Sherman, B. M. Upregulation of poly (ADP-Ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1, 812–821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bertucci, F. et al. How basal are triple-negative breast cancers? Int. J. Cancer 123, 236–240 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez-Angulo, A. M. et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin. Cancer Res. 17, 1082–1089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hartman, A. R. et al. Prevalence of BRCA mutations in an uselected population of triple-negative breast cancer. Cancer 118, 2787–2795 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, J. et al. Poly(ADP-ribose) polymerase-1 down-regulates BRCA2 expression through the BRCA2 promoter. J. Biol. Chem. 283, 36249–36256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nielsen, T. O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Graeser, M. et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16, 6159–6168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Workman, P. Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol. Cancer Ther. 2, 131–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Hastak, K., Alli, E. & Ford, J. M. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 70, 7970–7980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. US National Library of Medicine. Clinicaltrials.gov [online]

  77. Yardley, D. A. et al. A phase II trial of gemcitabine/carboplatin with or without trastuzumab in the first-line treatment of patients with metastatic breast cancer. Clin. Breast Cancer 8, 425–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Loesch, D. et al. Phase II trial of gemcitabine/carboplatin (plus trastuzumab in HER2-positive disease) in patients with metastatic breast cancer. Clin. Breast Cancer 8, 178–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Fojo, T., Amiri-Kordestani, L. & Bates, S. E. Potential pitfalls of crossover and thoughts on iniparib in triple-negative breast cancer. J. Natl Cancer Inst. 103, 1738–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Burzykowski, T. et al. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J. Clin. Oncol. 26, 1987–1992 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Robert, N. J. et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 29, 1252–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Anders, C. K. et al. TBCRC018: phase II study of iniparib plus chemotherapy to treat triple-negative breast cancer (TNBC) central nervous system (CNS) metastases (mets) [abstract 515]. J. Clin. Oncol. 31 (Suppl.), a515 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Drug Development Unit of the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research is supported in part by a programme grant from Cancer Research UK. Support was also provided by the Experimental Cancer Medicine Centre (to The Institute of Cancer Research) and the National Institute for Health Research Biomedical Research Centre (jointly to the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made a substantial contribution to discussions of the content and contributed to writing the manuscript. J. Mateo, M. Ong, and J. S. de Bono reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Johann S. de Bono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateo, J., Ong, M., Tan, D. et al. Appraising iniparib, the PARP inhibitor that never was—what must we learn?. Nat Rev Clin Oncol 10, 688–696 (2013). https://doi.org/10.1038/nrclinonc.2013.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.177

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer