Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

Molecular prescreening to select patient population in early clinical trials

Abstract

The efficacy of targeted therapies in patient populations selected for treatment on the basis of the molecular features of their tumours is shifting the current focus of treatment to biomarker-driven clinical trials. Phase I trials provide an arena for early hypothesis testing, examining not only safety and toxicity, but also target engagement, biologically effective dosages, and the appropriate patient population. In this Perspectives article, we describe this new trend in early drug development, establishing the different approaches for building a pre-screening programme in an academic institution that is involved in early drug development. Our experience establishing the phase I programme at Vall d'Hebrón serves as an example of how these approaches can be integrated in ongoing trials, and we believe these considerations will help others to implement similar programmes in their institutions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Matching patient tumour type/test-platform/drug.
Figure 2: Strategies for enrichment of clinical trials with patients that most likely would benefit of a targeted therapy.

Similar content being viewed by others

References

  1. Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).

    Article  CAS  Google Scholar 

  2. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  3. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  4. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  Google Scholar 

  5. Forbes, S. A. et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum. Genet. Ch. 10, Unit 10 11 (2008).

  6. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–950 (2011).

    Article  CAS  Google Scholar 

  7. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007).

    Article  CAS  Google Scholar 

  8. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  Google Scholar 

  9. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  Google Scholar 

  10. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  Google Scholar 

  11. Horstmann, E. et al. Risks and benefits of phase 1 oncology trials, 1991 through 2002. N. Engl. J. Med. 352, 895–904 (2005).

    Article  CAS  Google Scholar 

  12. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  Google Scholar 

  13. Hudis, C. A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    Article  CAS  Google Scholar 

  14. Paugh, S. W. et al. Cancer pharmacogenomics. Clin. Pharmacol. Ther. 90, 461–466 (2011).

    Article  CAS  Google Scholar 

  15. Yap, T. A., Sandhu, S. K., Workman, P. & de Bono, J. S. Envisioning the future of early anticancer drug development. Nat. Rev. Cancer 10, 514–523 (2010).

    Article  CAS  Google Scholar 

  16. Eisen, T. et al. Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581–586 (2006).

    Article  CAS  Google Scholar 

  17. Ratain, M. J. et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 2505–2512 (2006).

    Article  CAS  Google Scholar 

  18. Hilger, R. A. et al. ERK1/2 phosphorylation: a biomarker analysis within a phase I study with the new Raf kinase inhibitor BAY43–9006 Int. J. Clin. Pharmacol. Ther. 40, 567–568 (2002).

    Article  CAS  Google Scholar 

  19. Tabernero, J. et al. A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin. Cancer Res. 17, 6313–6321 (2011).

    Article  CAS  Google Scholar 

  20. Roberts, T. G., Jr, Lynch, T. J., Jr & Chabner, B. A. The phase III trial in the era of targeted therapy: unraveling the “go or no go” decision. J. Clin. Oncol. 21, 3683–3695 (2003).

    Article  CAS  Google Scholar 

  21. Bachman, K. E. et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. 3, 772–775 (2004).

    Article  CAS  Google Scholar 

  22. Wellcome Trust Sanger Institute. Cosmic: Catalogue of somatic mutations in cancer [online].

  23. Ross, J. S. et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14, 320–368 (2009).

    Article  CAS  Google Scholar 

  24. Timofeevski, S. L. et al. Enzymatic characterization of c-Met receptor tyrosine kinase oncogenic mutants and kinetic studies with aminopyridine and triazolopyrazine inhibitors. Biochemistry 48, 5339–5349 (2009).

    Article  CAS  Google Scholar 

  25. Prince, H. M., Bishton, M. J. & Harrison, S. J. Clinical studies of histone deacetylase inhibitors. Clin. Cancer Res. 15, 3958–3969 (2009).

    Article  CAS  Google Scholar 

  26. Longo, R. & Gasparini, G. Anti-VEGF therapy: the search for clinical biomarkers. Expert Rev. Mol. Diagn. 8, 301–314 (2008).

    Article  CAS  Google Scholar 

  27. Von Hoff, D. D. et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 28, 4877–4883 (2010).

    Article  CAS  Google Scholar 

  28. Tsimberidou, A. et al. Personalized medicine in a phase I clinical trials program: The M. D. Anderson Cancer Center Initiative [abstract]. J. Clin. Oncol. 29 (suppl.), CRA2500 (2011).

    Article  Google Scholar 

  29. Janku, F., Garrido-Laguna, I., Petruzelka, L. B., Stewart, D. J. & Kurzrock, R. Novel therapeutic targets. in non-small cell lung cancer. J. Thorac Oncol. 6, 1601–1612 (2011).

    Article  Google Scholar 

  30. Salgia, R. et al. Personalized treatment of lung cancer. Semin. Oncol. 38, 274–283 (2011).

    Article  CAS  Google Scholar 

  31. Kurzrock, R. et al. Project Zero Delay: a process for accelerating the activation of cancer clinical trials. J. Clin. Oncol. 27, 4433–4440 (2009).

    Article  Google Scholar 

  32. Chen, H. et al. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur. J. Surg. Oncol. 36, 657–662 (2010).

    Article  CAS  Google Scholar 

  33. Leach, F. S. et al. p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 53, 2231–2234 (1993).

    CAS  PubMed  Google Scholar 

  34. Schneider-Stock, R. et al. MDM2 amplification and loss of heterozygosity at Rb and p53 genes: no simultaneous alterations in the oncogenesis of liposarcomas. J. Cancer Res. Clin. Oncol. 124, 532–540 (1998).

    Article  CAS  Google Scholar 

  35. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    Article  CAS  Google Scholar 

  36. Serra, V. et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022–8030 (2008).

    Article  CAS  Google Scholar 

  37. Isakoff, S. J. & Baselga, J. Trastuzumab-DM1: building a chemotherapy-free road in the treatment of human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 29, 351–354 (2011).

    Article  CAS  Google Scholar 

  38. Kirk, R. Targeted therapies: chemotherapy-free option for relapsed patients with breast cancer. Nat. Rev. Clin. Oncol. 8, 317 (2011).

    Article  Google Scholar 

  39. Raynaud, F. I. et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther. 8, 1725–1738 (2009).

    Article  CAS  Google Scholar 

  40. Bendell, J. C. et al. Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 30, 282–290 (2011).

    Article  Google Scholar 

  41. Burris, H. et al. First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors [abstract]. J. Clin. Oncol. 28 (Suppl.), a3005 (2010).

    Article  Google Scholar 

  42. Rodon, J. Presented at the Keystone symposia, PI 3-Kinase Signaling Pathways. (Keystone, Colorado, 2011).

  43. Frayling, I. M. Methods of molecular analysis: mutation detection in solid tumours. Mol. Pathol. 55, 73–79 (2002).

    Article  CAS  Google Scholar 

  44. Ragoussis, J. Genotyping technologies for genetic research. Annu. Rev. Genomics Hum. Genet. 10, 117–133 (2009).

    Article  CAS  Google Scholar 

  45. Garcia, V. M., Cassier, P. A. & de Bono, J. Parallel anticancer drug development and molecular stratification to qualify predictive biomarkers: dealing with obstacles hindering progress. Cancer Discov. 1, 207–212 (2011).

    Article  Google Scholar 

  46. Dias-Santagata, D. et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol. Med. 2, 146–158 (2010).

    Article  Google Scholar 

  47. Tran, B. et al. Cancer genomics: technology, discovery, and translation. J. Clin. Oncol. 30, 647–660 (2010).

    Article  Google Scholar 

  48. Wang, J. et al. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin. Chem. 56, 623–632 (2010).

    Article  CAS  Google Scholar 

  49. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  Google Scholar 

  50. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  Google Scholar 

  51. Loeb, L. A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer 11, 450–457 (2011).

    Article  CAS  Google Scholar 

  52. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  Google Scholar 

  53. Al-Nedawi, K., Meehan, B. & Rak, J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8, 2014–2018 (2009).

    Article  CAS  Google Scholar 

  54. Board, R. E. et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br. J. Cancer 101, 1724–1730 (2009).

    Article  CAS  Google Scholar 

  55. Devriese, L. A., Voest, E. E., Beijnen, J. H. & Schellens, J. H. Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat Rev. 37, 579–589 (2011).

    Article  CAS  Google Scholar 

  56. Friel, A. M., Corcoran, C., Crown, J. & O'Driscoll, L. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res. Treat 123, 613–625 (2010).

    Article  CAS  Google Scholar 

  57. Lefebure, B. et al. Prognostic value of circulating mutant DNA in unresectable metastatic colorectal cancer. Ann. Surg. 251, 275–280 (2010).

    Article  Google Scholar 

  58. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  Google Scholar 

  59. Sieuwerts, A. M. et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin. Cancer Res. 17, 3600–3618 (2011).

    Article  CAS  Google Scholar 

  60. Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111ra121 (2011).

    Article  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov [online].

  62. US National Library of Medicine. ClinicalTrials.gov [online].

  63. US National Library of Medicine. ClinicalTrials.gov [online].

  64. Gordon, M. S. et al. An adaptive randomized discontinuation trial of XL184 (BMS-907351) in patients (pts) with advanced solid tumors [abstract]. J. Clin. Oncol. 28 (Suppl.), aTPS188 (2010).

    Article  Google Scholar 

  65. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).

    Article  CAS  Google Scholar 

  66. Glimelius, B. & Lahn, M. Window-of-opportunity trials to evaluate clinical activity of new molecular entities in oncology. Ann. Oncol. 22, 1717–1725 (2011).

    Article  CAS  Google Scholar 

  67. Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

    Article  CAS  Google Scholar 

  68. Printz, C. BATTLE to personalize lung cancer treatment. Novel clinical trial design and tissue gathering procedures drive biomarker discovery. Cancer 116, 3307–3308 (2010).

    Article  Google Scholar 

  69. Mendelsohn, J., Tursz, T., Schilsky, R. L. & Lazar, V. WIN Consortium--challenges and advances. Nat. Rev. Clin. Oncol. 8, 133–134 (2011).

    Article  Google Scholar 

  70. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  Google Scholar 

  71. Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).

    Article  CAS  Google Scholar 

  72. Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    Article  CAS  Google Scholar 

  73. Srinivasan, R., Choueiri, T. & Vaishampayan, U. A phase II study of the dual MET/VEGFR2 inhibitor XL880 in patients with papillary renal carcinoma [abstract]. J. Clin. Oncol. 26 (Suppl.), a5103 (2008).

    Article  Google Scholar 

  74. Yap, T. A. et al. Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J. Clin. Oncol. 29, 1271–1279 (2011).

    Article  CAS  Google Scholar 

  75. Olmos, D. et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751, 871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 11, 129–135 (2009).

    Article  Google Scholar 

  76. LoRusso, P. M. et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin. Cancer Res. 17, 2502–2511 (2011).

    Article  CAS  Google Scholar 

  77. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  79. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Claudia Aura, Javier Hernandez, Jose Jimenez, Ludmila Prudkin, Elisabeth Llonch, Laurence Le Breton, Gessami Sanchez-Oller, Debora Moreno, Nuria Murtra, Irene Braña, Begoña Graña, Gemma Sala, Susana Muñoz, and many others for their work in the design, implementation and organization of the pre-screening programme. We also thank Javier Cortés, Joan Carles, Enriqueta Felip, Josep María del Campo, Joan Seoane, Violeta Serra, Leticia de Mattos, and Mafalda Oliveira for their support to this programme and scientific input in the design of it. We thank Malte Peters, Michael Goldbrunner, and Wolfgang Wick from Novartis for their commitment in prescreening patients for PI3K inhibitors. We also thank Joann Aaron (freelance writer, Houston, US) for scientific editing of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and reviewed and edited the manuscript before submission. J. Rodón, R. Dienstmann and J. Tabernero researched data for the article and contributed significantly to the writing of the manuscript before submission. A. Vivancos also contributed significantly to the writing. J. Baselga, S. Ramón y Cajal and C. Saura contributed to researching the data for the article.

Corresponding author

Correspondence to Jordi Rodón.

Ethics declarations

Competing interests

Baselga declares he is a consultant and he serves as a scientific advisor of Aragon, AstraZeneca, Bayer-Onix, Chugai, Constellation, Exelixis, Intellikine, Merck, Novartis, Roche-Genentech, Sanofi. J Tabernero declares he is a consultant and receives grant support from Novartis and Roche-Genentech. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodón, J., Saura, C., Dienstmann, R. et al. Molecular prescreening to select patient population in early clinical trials. Nat Rev Clin Oncol 9, 359–366 (2012). https://doi.org/10.1038/nrclinonc.2012.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.48

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer