Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical opportunities and challenges in targeting tumour dormancy

Abstract

The reactivation of cancer cells following a seemingly successful treatment of the primary tumour with initial therapies (such as tumour excision or systemic therapy) is a well-known phenomenon. This metastatic rebirth is preceded by an interlude, termed dormancy, when cancer sleeps undetected for periods that can last years or even decades. Discoveries over the past 10 years have revealed the therapeutic potential of prolonging dormancy for maintaining a clinically asymptomatic state, or the permanent clearance of dormant residual disseminated cancer cells to affect a 'cure'. Here, we provide an overview of the mechanisms of dormancy and use genitourinary cancers as models to demonstrate how dormancy principles could be exploited clinically. Data from these models have yielded promising therapeutic strategies to address dormancy as well as diagnostics that could enable clinicians to monitor the dormant state of cancer in patients. This Review also aims to convey that dormancy, as a whole, likely results from coalescing contributions made by each of the three types of dormancy discussed (cellular, angiogenic and immunological). In our opinion, dormancy-directed therapies will prove most effective when the effect of these cumulative contributions are understood and targeted.

Key Points

  • Although the concept of cancer dormancy has been considered for over 120 years, it has been largely overlooked as a regulator of disease progression until the past two decades

  • Cancer dormancy can be currently explained by three mechanisms (cellular, angiogenic and immunological), with each making important contributions to the dormant state as a whole

  • Preclinical studies are providing an understanding of dormancy leading to therapeutic strategies to maintain or induce dormancy, or alternatively clear residual dormant cells from patients in remission to affect a permanent cure

  • New immunotherapies and antiangiogenic agents have been approved in the past decade and these may provide new tools to test the proposed mechanisms of dormancy in the clinical setting

  • Technological advances are emerging that might enable safe, effective and low-cost, long-term monitoring of dormancy required for clinical assessment of dormancy, and the evaluation of therapeutic efficacy in future clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interrelated mechanisms of dormancy.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Talmadge, J. E., Wolman, S. R. & Fidler, I. J. Evidence for the clonal origin of spontaneous metastases. Science 217, 361–363 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Willis, R. A. The Spread of Tumours in the Human Body (J. & A. Churchill, London, 1934).

    Google Scholar 

  4. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Article  Google Scholar 

  5. Hadfield, G. The dormant cancer cell. Br. Med. J. 4888, 607–610 (1954).

    Article  Google Scholar 

  6. Norton, L. A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988).

    CAS  PubMed  Google Scholar 

  7. Demicheli, R. et al. Local recurrences following mastectomy: support for the concept of tumor dormancy. J. Natl Cancer Inst. 86, 45–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Demicheli, R., Abbattista, A., Miceli, R., Valagussa, P. & Bonadonna, G. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res. Treat. 41, 177–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Quesnel, B. Tumor dormancy and immunoescape. APMIS 116, 685–694 (2008).

    Article  PubMed  Google Scholar 

  11. Muller, V. et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin. Cancer Res. 11, 3678–3685 (2005).

    Article  PubMed  Google Scholar 

  12. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Hou, J. M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 5, 525–532 (2012).

    Article  Google Scholar 

  15. Rameshwar, P. Breast cancer cell dormancy in bone marrow: potential therapeutic targets within the marrow microenvironment. Expert Rev. Anticancer Ther. 10, 129–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    Article  PubMed  Google Scholar 

  17. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cameron, D. M. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000).

    CAS  PubMed  Google Scholar 

  19. Lim, P. K. et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gewirtz, D. A. Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy 5, 1232–1234 (2009).

    Article  PubMed  Google Scholar 

  23. Wang, Q. et al. Survivin and escaping in therapy-induced cellular senescence. Int. J. Cancer 128, 1546–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in the bone. J. Exp. Med. 208, 2641–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mazar, A. P., Ahn, R. W. & O'Halloran, T. V. Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr. Pharm. Des. 17, 1970–1978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aguirre-Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 64, 7336–7345 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossowski, L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 63, 1684–1695 (2003).

    CAS  PubMed  Google Scholar 

  30. Yu, W., Kim, J. & Ossowski, L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J. Cell Biol. 137, 767–777 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, F. et al. Reciprocal interactions between b1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hapke, S. et al. Integrin αvβ3/vitronectin interaction affects expression of the urokinase system in human ovarian cancer cells. J. Biol. Chem. 28, 26340–26348 (2001).

    Article  Google Scholar 

  34. Hickson, J. A. et al. The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res. 66, 2264–2270 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Lotan, T. et al. c-Jun NH2-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4-mediated inhibition of SKOV3ip.1 ovarian cancer metastasis involves growth arrest and p21 up-regulation. Cancer Res. 68, 2166–2175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Connell, J. L. et al. Probing prokaryotic social behaviors with bacterial ''lobster traps''. MBio 1, e00202–e00210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Agur, Z. et al. Disruption of a quorum sensing mechanism triggers tumorigenesis: a simple discrete model corroborated by experiments in mammary cancer stem cells. Biol. Direct 5, 20 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hickson, J. et al. Societal interactions in ovarian cancer metastasis: a quorum-sensing hypothesis. Clin. Exp. Metastasis 26, 67–76 (2009).

    Article  PubMed  Google Scholar 

  39. Barkin, D. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241–6250 (2008).

    Article  CAS  Google Scholar 

  40. Steeg, P. S. & Theodorescu, D. Metastasis: a therapeutic target for cancer. Nat. Clin. Pract. Oncol. 5, 206–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Torres Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M. & Jain, R. K. Non-invasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl Acad. Sci. USA 91, 2081–2085 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto, R. et al. Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood 105, 2757–2763 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Zanetti, J. S. et al. The role of tumor hypoxia in MUC1-positive breast carcinomas. Virchows Arch. 459, 367–375 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Jouanneau, J., Moens, G., Montesano, R. & Thiery, J. P. FGF-1 but not FGF-4 secreted by carcinoma cells promotes in vitro and in vivo angiogenesis and rapid tumor proliferation. Growth Factors 12, 37–47 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Bergers, G. & Coussens, L. M. Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr. Opin. Genet. Dev. 10, 120–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Heissig, B., Hattori, K., Friedrich, M., Rafii, S. & Werb, Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr. Opin. Hematol. 10, 136–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rundhaug, J. E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 9, 267–285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the non angiogenic phenotype. J. Natl Cancer Inst. 98, 316–325 (2006).

    Article  PubMed  Google Scholar 

  57. Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc. Natl Acad. Sci. USA 103, 16266–16271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Indraccolo, S. et al. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc. Natl Acad. Sci. USA 103, 4216–4221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Straume, O. et al. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer. Proc. Natl Acad. Sci. USA 109, 8699–8704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  61. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  62. Ebbinghaus, S. et al. Phase 2 study of ABT-510 in patients with previously untreated advanced renal cell carcinoma. Clin. Cancer Res. 15, 6689–6695 (2007).

    Article  CAS  Google Scholar 

  63. Almog, N. et al. Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res. 69, 836–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ge, W. et al. B7-H1 up-regulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells. Leuk. Res. 33, 948–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Teng, M. W. L., Swann, J. B., Koebel, C. M., Schreiber, R. D. & Smyth, M. J. Immune-mediated dormancy: an equilibrium with cancer. J. Leukocyte Bio. 84, 988–993 (2008).

    Article  CAS  Google Scholar 

  67. Cekic, C. et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188, 198–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Kauffman, M. H. et al. Transplant tumor registry: donor related malignancies. Transplantation 74, 358–362 (2002).

    Article  Google Scholar 

  69. Strauss, D. C. & Thomas, J. M. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 11, 790–796 (2010).

    Article  PubMed  Google Scholar 

  70. Uhr, J. W. & Pantel, K. Controversies in clinical cancer dormancy. Proc. Natl Acad. Sci. USA 108, 12396–12400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ribatti, D. & Crivellato, E. Immune cells and angiogenesis. J. Cell. Mol. Med. 13, 2822–2833 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rogers, T. L. & Holen, I. Tumour macrophages as potential targets of bisphosphonates. J. Transl. Med. 9, 177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Said, N., Smith, S., Sanchez-Carbayo, M. & Theodorescu, D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J. Clin. Invest. 121, 132–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lepisto, A. J., McKolanis, J. R. & Finn, O. J. in Cancer immunotherapy: immune suppression and tumor growth Ch. 10 (eds Prendergast, G. C. & Jaffee, E. M.) 167–176 (Academic Press, London, 2007).

    Book  Google Scholar 

  76. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  77. Titus, B. et al. Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res. 65, 7320–7327 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Said, N., Sanchez-Carbayo, M., Smith, S. C. & Theodorescu, D. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J. Clin. Invest. 122, 1503–1518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D. & Salerno, M. Metastasis suppressor genes: basic biology and potential clinical use. Clin. Breast Cancer 4, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Nash, K. T. et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl Cancer Inst. 99, 309–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Horak, C. E., Lee, J. H., Marshall, J. C., Shreeve, S. M. & Steeg, P. S. The role of metastasis suppressor genes in metastatic dormancy. APMIS 116, 586–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. FDA. NME Drug and New Biologic Approvals in 2005 [online], (2011).

  83. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Posadas, E. M. & Figlin, R. A. Systemic therapy in renal cell carcinoma: advancing paradigms. Oncology 26, 290–301 (2012).

    PubMed  Google Scholar 

  85. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  86. National Cancer Institute. FDA Approval for Sipuleucel-T [online], (2010).

  87. Small, E. J. et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24, 3089–3094 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  90. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  91. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  92. Glode, L. M., Barqawi, A., Crighton, F., Crawford, E. D. & Kerbel, R. Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 98, 1643–1648 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martin-Padura, I. et al. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab. Invest. 92, 952–966 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23, 939–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Bocci, G., Francia, G., Man, S., Lawler, J. & Kerbel, R. S. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl Acad. Sci. USA 100, 12917–12922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bocci, G., Nicolaou, K. C. & Kerbel, R. S. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 62, 6938–6943 (2002).

    CAS  PubMed  Google Scholar 

  98. Loeffler, M., Kruger, J. A. & Reisfeld, R. A. Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase. Cancer Res. 65, 5027–5030 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Fontana, A. et al. Metronomic cyclophosphamide in elderly patients with advanced, castration-resistant prostate cancer. J. Am. Geriatr. Soc. 58, 986–988 (2010).

    Article  PubMed  Google Scholar 

  101. Pasquier, E., Kavallaris, M. & Andre, N. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol. 7, 455–465 (2010).

    Article  PubMed  Google Scholar 

  102. Flanigan, R. C. et al. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 345, 1655–1659 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Mickisch, G. H., Garin, A., van Poppel, H., de Prijck, L. & Sylvester, R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: a randomised trial. European Organisation for Research and Treatment of Cancer (EORTC) Genitourinary Group. Lancet 358, 966–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Elhilali, M. M. et al. Placebo-associated remissions in a multicentre, randomized, double-blind trial of interferon gamma-1b for the treatment of metastatic renal cell carcinoma. The Canadian Urologic Oncology Group. BJU Int. 86, 613–618 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Gunduz, N., Fisher, B. & Saffer, E. A. Effect of surgical removal on the growth and kinetics of residual tumor. Cancer Res. 39, 3861–3865 (1979).

    CAS  PubMed  Google Scholar 

  106. Guba, M. et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res. 61, 5575–5579 (2001).

    CAS  PubMed  Google Scholar 

  107. Smith, S. C. et al. A 20-gene model for molecular nodal staging of bladder cancer: development and prospective assessment. Lancet Oncol. 12, 137–143 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brenner, D. J. & Hall, E. J. Computed tomography—An increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Racila, E. et al. Detection and characterization of carcinoma cells in the blood. Proc. Natl Acad. Sci. USA 95, 4589–4594 (1999).

    Article  Google Scholar 

  111. Riethdorf, S. et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13, 920–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Sieuwerts, A. M. et al. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumour cells. J. Natl Cancer Inst. 101, 61–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van Houten, V. M. et al. Molecular assays for the diagnosis of minimal residual head-and-neck cancer: methods, reliability, pitfalls, and solutions. Clin. Cancer Res. 6, 3803–3816 (2000).

    CAS  PubMed  Google Scholar 

  114. Shaw, J. A. et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res. 22, 220–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Marasa, B. S. et al. Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Sci. Signal. 2, ra69 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    Article  PubMed  Google Scholar 

  118. Townson, J. L. et al. Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging. Cancer Res. 69, 8326–8331 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institutes of Health grants CA075115 and CA104106 to DT. The authors would like to thank Dan Welch for his critical review of the manuscript and contribution of unpublished data.

Author information

Authors and Affiliations

Authors

Contributions

J. A. Hensel and T. W. Flaig researched data for the article, substantially contributed to the discussion of content and wrote the article. D. Theodorescu reviewed and edited the manuscript prior to submission.

Corresponding author

Correspondence to Dan Theodorescu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensel, J., Flaig, T. & Theodorescu, D. Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol 10, 41–51 (2013). https://doi.org/10.1038/nrclinonc.2012.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing