Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Past, present, and future of radiotherapy for the benefit of patients

Abstract

Radiotherapy has been driven by constant technological advances since the discovery of X-rays in 1895. Radiotherapy aims to sculpt the optimal isodose on the tumour volume while sparing normal tissues. The benefits are threefold: patient cure, organ preservation and cost-efficiency. The efficacy and tolerance of radiotherapy were demonstrated by randomized trials in many different types of cancer (including breast, prostate and rectum) with a high level of scientific evidence. Such achievements, of major importance for the quality of life of patients, have been fostered during the past decade by linear accelerators with computer-assisted technology. More recently, these developments were augmented by proton and particle beam radiotherapy, usually combined with surgery and medical treatment in a multidisciplinary and personalized strategy against cancer. This article reviews the timeline of 100 years of radiotherapy with a focus on breakthroughs in the physics of radiotherapy and technology during the past two decades, and the associated clinical benefits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Prostate cancer radiotherapy 1935–2010.

References

  1. 1

    Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Roentgen, W. C. On a new kind of ray (first report) [German]. Munch. Med. Wochenschr. 101, 1237–1239 (1959).

    CAS  PubMed  Google Scholar 

  3. 3

    Paterson, J. R. The Treatment of Malignant Disease By Radium And X-Rays, Being a Practice of Radiotherapy (Williams & Wilkins, London, 1948).

    Google Scholar 

  4. 4

    Becquerel, J. & Crowther, J. A. Discovery of radioactivity. Nature 161, 609 (1948).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Curie, E. Marie and Pierre Curie and the discovery of radium. Br. J. Radiol. 23, 409–412 (1950).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Schäfer, W. & Witte, E. Über eine neue Körperhöhlenröntgenröhre zur Bestrahulung von Uterustumoren. Strahlentherapie 44, 283 (1932).

    Google Scholar 

  7. 7

    Grubbé, E. H. Priority in the use of X-rays. Radiology 21, 156–162 (1933).

    Article  Google Scholar 

  8. 8

    Despeignes, V. Observation concernant un cas de cancer de l'estomac traité par les rayons Roentgen. Lyon Med. 82, 428–430 (1896).

    Google Scholar 

  9. 9

    Dubois, J. B. & Ash, D. in Radiation Oncology: A Century of Progress and Achievement: 1895–1995 (ed. Bernier, J.) 77–98 (ESTRO publication, Brussels, 1995).

    Google Scholar 

  10. 10

    Mould, R. F. A Century of X-rays and Radioactivity in Medicine (IOP Publishing, Bristol, 1993).

    Google Scholar 

  11. 11

    Thoraeus, R. A. A study of ionization method for measuring the intensity and absorption of roentgen rays and of the efficiency of different filters used in therapy. Acta Radiol. 15, 1–86 (1932).

    Article  Google Scholar 

  12. 12

    Chaoul, H. Short-distance roentgenotherapy (contact roentgenotherapy). J. Radiol. Electrol. Arch. Electr. Medicale 31, 290–298 (1950).

    CAS  PubMed  Google Scholar 

  13. 13

    Baclesse, F. Comparative study of results obtained with conventional radiotherapy (200 KV) and cobalt therapy in the treatment of cancer of the larynx. Clin. Radiol. 18, 292–300 (1967).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Pierquin, B., Chassagne, D. & Gasiorowski, M. Présentation technique et dosimétrique de curiepuncture par fils d'or-198. J. Radiol. Electrol. Med. Nucl. 40, 690–693 (1959).

    CAS  PubMed  Google Scholar 

  15. 15

    Kramer, R. Radiation therapy in early laryngeal cancer. J. Mt Sinai Hosp. NY 14, 24–28 (1947).

    CAS  Google Scholar 

  16. 16

    Bergonié, J. & Tribondeau, L. L'interpretation de quelques resultats de la radiotherapie et essai de fixation d'une technique rationnelle. C. R. Seances. Acad. Sci. 143, 983–985 (1906).

    Google Scholar 

  17. 17

    Regaud, C. & Ferroux, R. Discordance entre les effects des rayons X sur les testicules et la peau, implications pour le fractionnement de la dose. Compt. Rend. Soc. Biol. 97, 431–434 (1927).

    Google Scholar 

  18. 18

    Coutard, H. Principles of X-ray therapy of malignant disease. Lancet 224, 1–8 (1934).

    Article  Google Scholar 

  19. 19

    Taylor, L. S. History of the International Commission on Radiological Protection (ICRP). Health Phys. 1, 97–104 (1958).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Geiger, H. & Müller, W. The electron counting tube [German]. Physikalische Zeitschrift 29, 839–841 (1928).

    Google Scholar 

  21. 21

    Curie, I. & Joliot, F. A new type of radioactivity [French]. Compt. Rend. Acad. Sci. (Fr.) 198, 254–256 (1934).

    CAS  Google Scholar 

  22. 22

    Johns, H., Bates, I. & Watson, T. 1000 Curie cobalt units for radiation therapy. I. The Saskatchewan cobalt 60 unit. Br. J. Radiol. 25, 296–302 (1952).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Laugier, A. The first century of radiotherapy in France [French]. Bull. Acad. Natl Med. 180, 143–160 (1996).

    CAS  PubMed  Google Scholar 

  24. 24

    Courageot, E., Huet, C., Clairand, I., Bottollier-Depois, J. F. & Gourmelon, P. Numerical dosimetric reconstruction of a radiological accident in South America in April 2009. Radiat. Prot. Dosimetry 144, 540–542 (2011).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Pierquin, B. & Dutreix, A. For a new methodology in curietherapy: the system of Paris (endo- and plesioradiotherapy with non-radioactive preparation). A preliminary note [French]. Ann. Radiol. 9, 757–760 (1966).

    CAS  PubMed  Google Scholar 

  26. 26

    Le Bourgeois, J.-P., Chavaudra, J. & Eschwege, F. Rádiotherapie Oncologique (Hermann, Paris, 1992).

    Google Scholar 

  27. 27

    Fry, D. W., Harvie, R. B., Mullett, L. B. & Walkinshaw, W. A travelling-wave linear accelerator for 4-MeV electrons. Nature 162, 859–861 (1948).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Emami, B. et al. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21, 109–122 (1991).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Johns, H. E. & Cunningham, J. R. The Physics of Radiology 4th edn (Charles C. Thomas, Springfield, IL, 1983).

    Google Scholar 

  30. 30

    Tiemann, J. Practical irradiation planning using a “dedicated system” [German]. Strahlentherapie 148, 463–467 (1974).

    CAS  PubMed  Google Scholar 

  31. 31

    Scientific Committee on Radiation Dosimetry (SCRAD) of the American Association of Physicists in Medicine. Protocol for the dosimetry of X-rays and gamma ray beams with maximum energies between 0.6 and 50 MeV. Phys. Med. Biol. 16, 379–396 (1971).

  32. 32

    Horiot, J. C., van der Schueren, E., Johansson, K. A., Bernier, J. & Bartelink, H. The programme of quality assurance of the EORTC radiotherapy group. A historical overview. Radiother. Oncol. 29, 81–84 (1993).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Bernier, J., Hall, E. J. & Giaccia, A. Radiation oncology: a century of achievements. Nat. Rev. Cancer 4, 737–747 (2004).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Purdy, J. A. Current ICRU definitions of volumes: limitations and future directions. Semin. Radiat. Oncol. 14, 27–40 (2004).

    PubMed  Article  Google Scholar 

  35. 35

    Bonadonna, G. et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 294, 405–410 (1976).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Veronesi, U. et al. Comparing radical mastectomy with quadrantectomy, axillary dissection, and radiotherapy in patients with small cancers of the breast. N. Engl. J. Med. 305, 6–11 (1981).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Veronesi, U. et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 347, 1227–1232 (2002).

    PubMed  Article  Google Scholar 

  38. 38

    Gérard, J.-P. Guérir Le Cancer Sans Mutiler (Horvath, Lyon, 1995).

    Google Scholar 

  39. 39

    Krook, J. E. et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N. Engl. J. Med. 324, 709–715 (1991).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Påhlman, L. Initial report from a Swedish multicentre study examining the role of preoperative irradiation in the treatment of patients with resectable rectal carcinoma. Br. J. Surg. 80, 1333–1336 (1993).

    Article  Google Scholar 

  41. 41

    Marsh, P. J., James, R. D. & Schofield, P. F. Adjuvant preoperative radiotherapy for locally advanced rectal carcinoma. Dis. Colon Rectum 37, 1205–1214 (1994).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Kapiteijn, E. et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 345, 638–646 (2001).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Gérard, J. P. et al. Improved sphincter preservation in low rectal cancer with high-dose preoperative radiotherapy : the Lyon R96-02 randomized trial. J. Clin. Oncol. 22, 2404–2409 (2004).

    PubMed  Article  Google Scholar 

  44. 44

    Sauer, R. et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 351, 1731–1740 (2004).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Gérard, J. P. et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancers: results of FFCD 9203. J. Clin. Oncol. 24, 4620–4625 (2006).

    PubMed  Article  Google Scholar 

  46. 46

    Sebag-Montefiore, D. et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 373, 811–820 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Gérard, J. P. et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J. Clin. Oncol. 28, 1638–1644 (2010).

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Aschele, C. et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J. Clin. Oncol. 29, 2773–2780 (2011).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Gérard, J.-P. et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J. Clin. Oncol. 28, 1638–1644 (2010).

    PubMed  Article  CAS  Google Scholar 

  50. 50

    Cummings, B. J., Harwood, A. R., Keane, T. J., Thomas, G. M. & Rider, W. D. Combined treatment of squamous cell carcinoma of the anal canal: radical radiation therapy with 5-fluorouracil and mitomycin-C, a preliminary report. Dis. Colon Rectum 23, 389–391 (1980).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Stallard, H. B. Radiotherapy for malignant melanoma of the choroid. Br. J. Ophthalmol. 50, 147–155 (1966).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Caujolle, J. P. et al. Proton beam radiotherapy for uveal melanomas at nice teaching hospital: 16 years' experience. Int. J. Radiat. Oncol. Biol. Phys. 78, 98–103 (2010).

    PubMed  Article  Google Scholar 

  53. 53

    Hounsfield, G. N. Nobel Award address. Computed medical imaging. Med. Phys. 7, 283–290 (1980).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Dutreix, A. The computer in radiotherapy [French]. Rev. Prat. 22, 1359–1360 (1972).

    CAS  PubMed  Google Scholar 

  55. 55

    Mohan, R. Field shaping for three-dimensional conformal radiation therapy and multileaf collimation. Semin. Radiat. Oncol. 5, 86–99 (1995).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Dutreix, A. Prescription, precision, and decision in treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 13, 1291–1296 (1987).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Oldham, M., Neal, A. & Webb, S. A comparison of conventional 'forward planning' with inverse planning for 3D conformal radiotherapy of the prostate. Radiother. Oncol. 35, 248–262 (1995).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Pollack, A. et al. Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J. Clin. Oncol. 18, 3904–3911 (2000).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Kuban, D. A. et al. Long-term results of the MD Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008).

    PubMed  Article  Google Scholar 

  60. 60

    Beckendorf, V. et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 80, 1056–1063 (2011).

    PubMed  Article  Google Scholar 

  61. 61

    Peeters, S. T. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J. Clin. Oncol. 24, 1990–1996 (2006).

    PubMed  Article  Google Scholar 

  62. 62

    Dearnaley, D. P. et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol. 8, 475–487 (2007).

    PubMed  Article  Google Scholar 

  63. 63

    Zelefsky, M. J. et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 1124–1129 (2008).

    PubMed  Article  Google Scholar 

  64. 64

    Hoskin, P. J. et al. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother. Oncol. 103, 217–222 (2012).

    PubMed  Article  Google Scholar 

  65. 65

    Sathya, J. R. et al. Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J. Clin. Oncol. 23, 1192–1199 (2005).

    PubMed  Article  Google Scholar 

  66. 66

    Brahme, A. Development of radiation therapy optimization. Acta Oncol. 39, 579–595 (2000).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Pow, E. H. et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 981–991 (2006).

    Article  PubMed  Google Scholar 

  68. 68

    Nutting, C. M. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 12, 127–136 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Glatstein, E. Intensity-modulated radiation therapy: the inverse, the converse, and the perverse. Semin. Radiat. Oncol. 12, 272–281 (2002).

    PubMed  Article  Google Scholar 

  70. 70

    Fenwick, J. D., Tomé, W. A., Soisson, E. T., Mehta, M. P. & Rock Mackie, T. Tomotherapy and other innovative IMRT delivery systems. Semin. Radiat. Oncol. 16, 199–208 (2006).

    Article  PubMed  Google Scholar 

  71. 71

    Leksell, L. The stereotaxic method and radiosurgery of the brain. Acta Chir. Scand. 102, 316–319 (1951).

    CAS  PubMed  Google Scholar 

  72. 72

    Gérard, J. P. et al. Recommendation of the working group commissioned by the French Nuclear Safety Authority on stereotactic radiation therapy [French]. Cancer Radiother. 16 (Suppl.) S5–S9 (2012).

    PubMed  Article  Google Scholar 

  73. 73

    Salama, J. K., Kirkpatrick, J. P. & Yin, F. F. Stereotactic body radiotherapy treatment of extracranial metastases. Nat. Rev. Clin. Oncol. 9, 654–665 (2012).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Lagerwaard, F. J. et al. Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 83, 348–353 (2012).

    PubMed  Article  Google Scholar 

  75. 75

    Milano, M. T., Katz, A. W., Zhang, H. & Okunieff, P. Oligometastases treated with stereotactic body radiotherapy: long-term follow-up of prospective study. Int. J. Radiat. Oncol. Biol. Phys. 83, 878–886 (2012).

    PubMed  Article  Google Scholar 

  76. 76

    Grimm, J. et al. Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J. Appl. Clin. Med. Phys. 12, 3368 (2011).

    PubMed  Google Scholar 

  77. 77

    Thariat, J. et al. Cyberknife robotic stereotactic radiotherapy: technical aspects and recent developments [French]. Bull. Cancer 97, 807–818 (2010).

    CAS  PubMed  Google Scholar 

  78. 78

    Bucci, M. K., Bevan, A. & Roach, M. 3rd. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J. Clin. 55, 117–134 (2005).

    PubMed  Article  Google Scholar 

  79. 79

    Ling, C. C., Yorke, E. & Fuks, Z. From IMRT to IGRT: frontierland or neverland? Radiother. Oncol. 78, 119–122 (2006).

    PubMed  Article  Google Scholar 

  80. 80

    Thariat, J. et al. Image-guided radiation therapy for muscle-invasive bladder cancer. Nat. Rev. Urol. 9, 23–29 (2012).

    CAS  Article  Google Scholar 

  81. 81

    Schwartz, D. L. Current progress in adaptive radiation therapy for head and neck cancer. Curr. Oncol. Rep. 14, 139–147 (2012).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Schwartz, D. L. et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int. J. Radiat. Oncol. Biol. Phys. 83, 986–993 (2012).

    PubMed  Article  Google Scholar 

  83. 83

    Mazeron, J. J. et al. GEC-ESTRO recommendations for brachytherapy for head andneck squamous cell carcinomas. Radiother. Oncol. 91, 150–156 (2009).

    PubMed  Article  Google Scholar 

  84. 84

    Speight, J. L. & Roach, M. 3rd. Radiotherapy in the management of clinically localized prostate cancer: evolving standards, consensus, controversies and new directions. J. Clin. Oncol. 23, 8176–8185 (2005).

    PubMed  Article  Google Scholar 

  85. 85

    Hannoun-Levi, J.-M., Chand-Fouche, M.-E., Dejean, C. & Courdi, A. Dose gradient impact on equivalent dose at 2 Gy for high dose rate interstitial brachytherapy. J. Contemp. Brachyther. 4, 14–20 (2012).

    Article  Google Scholar 

  86. 86

    Crook, J. M. et al. Comparison of health-related quality of life 5 years after SPIRIT: surgical prostatectomy versus interstitial radiation intervention trial. J. Clin. Oncol. 29, 362–368 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Caccialanza, M., Piccinno, R., Beretta, M. & Gnecchi, L. Results and side effects of dermatologic radiotherapy: a retrospective study of irradiated cutaneous epithelial neoplasms. J. Am. Acad. Dermatol. 41, 589–594 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    Gérard, J. P. et al. Renaissance of contact X-ray therapy for treating rectal cancer. Exp. Rev. Med. Devices 8, 483–492 (2011).

    Article  Google Scholar 

  89. 89

    Vaidya, J. S. et al. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet 376, 91–102 (2010).

    PubMed  Article  Google Scholar 

  90. 90

    Veronesi, U. et al. A preliminary report of intraoperative radiotherapy (IORT) in limited-stage breast cancers that are conservatively treated. Eur. J. Cancer 37, 2178–2183 (2001).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Bartelink, H. et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N. Engl. J. Med. 345, 1378–1387 (2001).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Whelan, T. J. et al. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med. 362, 513–520 (2010).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Polgár, C. et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother. Oncol. 94, 264–273 (2010).

    PubMed  Article  Google Scholar 

  94. 94

    Offersen, B. V., Overgaard, M., Kroman, N. & Overgaard, J. Accelerated partial breast irradiation as part of breast conserving therapy of early breast carcinoma: a systematic review. Radiother. Oncol. 90, 1–13 (2009).

    PubMed  Article  Google Scholar 

  95. 95

    Thwaites, D. I. & Malicki, J. Physics and technology in ESTRO and in radiotherapy and oncology: past, present and into the 4th dimension. Radiother. Oncol. 100, 327–332 (2011).

    PubMed  Article  Google Scholar 

  96. 96

    Maingon, P. et al. Radiotherapy of advanced mycosis fungoides: indications and results of total skin electron beam and photon beam irradiation. Radiother. Oncol. 54, 73–78 (2000).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Flickinger, J. et al. Acoustic neuroma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int. J. Radiat. Oncol. Biol. Phys. 60, 225–230 (2004).

    PubMed  Article  Google Scholar 

  98. 98

    Haie-Meder, C., Siebert, F. A. & Pötter, R. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy. Radiother. Oncol. 100, 333–343 (2011).

    PubMed  Article  Google Scholar 

  99. 99

    Tsujii, H. et al. Clinical results of carbon ion radiotherapy at NIRS. Radiat. Res. 48 (Suppl. A), A1–A13 (2007).

    CAS  Google Scholar 

  100. 100

    Suit, H. D. et al. Increased efficacy of radiation therapy by use of proton beam. Strahlenther. Onkol. 166, 40–44 (1990).

    CAS  PubMed  Google Scholar 

  101. 101

    Catterall, M. Neutron therapy at Hammersmith Hospital 1970 to 1985. A re-examination of results. Strahlenther. Onkol. 165, 298–301 (1989).

    CAS  PubMed  Google Scholar 

  102. 102

    De Ruysscher, D. et al. Charged particles in radiotherapy: a 5-year update of a systematic review. Radiother. Oncol. 103, 5–7 (2012).

    PubMed  Article  Google Scholar 

  103. 103

    Dendale, R. et al. Proton beam radiotherapy for uveal melanoma: results of Curie Institut-Orsay proton therapy center. Int. J. Radiat. Oncol. Biol. Phys. 65, 780–787 (2006).

    PubMed  Article  Google Scholar 

  104. 104

    Feuvret, L. et al. A treatment planning comparison of combined photon-proton beams versus proton beams-only for the treatment of skull base tumors. Int. J. Radiat. Oncol. Biol. Phys. 69, 944–954 (2007).

    PubMed  Article  Google Scholar 

  105. 105

    Tubiana, M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother. Oncol. 91, 4–15 (2009).

    PubMed  Article  Google Scholar 

  106. 106

    Shirai, T. et al. Recent progress of new cancer therapy facility at HIMAC. Proc. IPAC2011, 3604–3606 (2011).

  107. 107

    Suit, H. et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother. Oncol. 95, 3–22 (2010).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Kraft, G. The radiobiological and physical basis for radiotherapy with protons and heavier ions. Strahlenther. Onkol. 166, 10–13 (1990).

    CAS  PubMed  Google Scholar 

  109. 109

    Kamada, T. Clinical evidence of particle beam therapy (carbon). Int. J. Clin. Oncol. 17, 85–88 (2012).

    PubMed  Article  Google Scholar 

  110. 110

    Ohno, T. et al. Carbon ion radiotherapy at the Gunma University Heavy Ion Medical Center: new facility set-up. Cancers 3, 4046–4060 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Rieken, S. et al. Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts. Radiat. Oncol. 7, 41 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112

    Castro, J. R. et al. Experience in charged particle irradiation of tumors of the skull base: 1977–1992. Int. J. Radiat. Oncol. Biol. Phys. 29, 647–655 (1994).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Perez, C. A., Brady, L. W. & Roti, J. L. in Principles and Practice of Radiation Oncology (eds Perez, C. A. & Brady, L. W.) 1–78 (Lippincott-Raven, Philadelphia, 1998).

    Google Scholar 

  114. 114

    Borella, L. et al. Volume and costs of the hospital management of cancer in France in 1999 [French]. Bull. Cancer 89, 809–821 (2002).

    PubMed  Google Scholar 

  115. 115

    Kulthau, K. A. et al. Prospective sudy of health-related quality of life for children with brain tumors treated with proton radiotherapy. J. Clin. Oncol. 30, 2079–2086 (2012).

    Article  Google Scholar 

  116. 116

    Pisani, P., Parkin, D. M., Bray, F. & Ferlay, J. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer 83, 18–29 (1999).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. The Department of Veterans Affairs Laryngeal Cancer Study Group. N. Engl. J. Med. 324, 1685–1690 (1991).

Download references

Acknowledgements

The authors acknowledge Pascale Martino, Adrian Plesu, Bastien Chanoux, Vincent Corvasce, Jerome Mandrillon and Karen Benezery for their help in making figures.

Author information

Affiliations

Authors

Contributions

J. Thariat, J.-M. Hannoun-Levi and J.-P. Gérard researched the data for the article. J. Thariat and J.-P. Gérard discussed the article content and then wrote the manuscript with A. Sun Myint and T. Vuong. All authors edited the manuscript before submission.

Corresponding author

Correspondence to Jean-Pierre Gérard.

Ethics declarations

Competing interests

J. P. Gérard acts as a consultant for Ariane Medical Systems. The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thariat, J., Hannoun-Levi, JM., Sun Myint, A. et al. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 10, 52–60 (2013). https://doi.org/10.1038/nrclinonc.2012.203

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing