Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Latest advances and current challenges in the treatment of multiple myeloma

Abstract

Effectively treating patients with multiple myeloma is challenging. The development of therapeutic regimens over the past decade that incorporate the proteasome inhibitor bortezomib and the immunomodulatory drugs thalidomide and lenalidomide has been the cornerstone of improving the outcome of patients with myeloma. Although these treatment regimens have improved patient survival, nearly all patients eventually relapse. Our improved understanding of the biology of the disease and the importance of the microenvironment has translated into ongoing work to help overcome the challenge of relapse. Several classes of agents including next-generation proteasome inhibitors, immunomodulatory agents, selective histone-deacetylase inhibitors, antibody and antitumor immunotherapy approaches are currently undergoing preclinical and clinical evaluation. This Review provides an update on the latest advances in the treatment of multiple myeloma. In particular, we focus on novel therapies including modulating protein homeostasis, kinases inhibitors, targeting accessory cells and cytokines, and immunomodulatory agents. A discussion of the challenges associated with these therapeutic approaches is also presented.

Key Points

  • Despite recent advances, approximately all patients with multiple myeloma eventually relapse

  • Recognizing the importance of the role of the tumor microenvironment has been one of the most important advances in the field

  • Pomalidomide and oral proteasome inhibitors showed promising activity in preclinical studies and are now being evaluated in early clinical trials

  • Antibodies, in particular elotuzumab (an anti-CS 1 antibody), are an important development; inhibitors of histone deacetylases, the phosphoinositide 3-kinase 3-kinase pathway and heat shock protein 90 are also showing promise

  • Methods to augment antitumor immunotherapy of the immune system are being evaluated

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suggested approach to the treatment of patients with newly-diagnosed multiple myeloma.
Figure 2: Clinical trials of novel agents targeting myeloma cells and their bone-marrow microenvironment.

Similar content being viewed by others

References

  1. Kyle, R. A. & Rajkumar, S. V. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23, 3–9 (2009).

    CAS  PubMed  Google Scholar 

  2. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer. J. Clin. 60, 277–300 (2010).

    PubMed  Google Scholar 

  3. Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).

    CAS  PubMed  Google Scholar 

  4. San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).

    CAS  PubMed  Google Scholar 

  5. Palumbo, A. et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet 367, 825–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Barlogie, B. et al. Reiterative survival analyses of total therapy 2 for multiple myeloma elucidate follow-up time dependency of prognostic variables and treatment arms. J. Clin. Oncol. 28, 3023–3027 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber, D. M. et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med. 357, 2133–2142 (2007).

    CAS  PubMed  Google Scholar 

  8. Dimopoulos, M. et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 357, 2123–2132 (2007).

    CAS  PubMed  Google Scholar 

  9. Palumbo, A. & Anderson, K. Multiple myeloma. N. Engl. J. Med. 364, 1046–1060 (2011).

    CAS  PubMed  Google Scholar 

  10. Anderson, K. C. Oncogenomics to target myeloma in the bone marrow microenvironment. Clin. Cancer Res. 17, 1225–1233 (2011).

    CAS  PubMed  Google Scholar 

  11. Kumar, S. K. et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 111, 2516–2520 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar, S. K. et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia 26, 149–157 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).

    CAS  PubMed  Google Scholar 

  14. San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).

    CAS  PubMed  Google Scholar 

  15. Mahindra, A., Hideshima, T. & Anderson, K. C. Multiple myeloma: biology of the disease. Blood Rev. 24 (Suppl 1), S5–S11 (2010).

    PubMed  Google Scholar 

  16. Palumbo, A. et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22, 414–423 (2008).

    CAS  PubMed  Google Scholar 

  17. Carrier, M., Le Gal, G., Tay, J., Wu, C. & Lee, A. Y. Rates of venous thromboembolism in multiple myeloma patients undergoing immunomodulatory therapy with thalidomide or lenalidomide: a systematic review and meta-analysis. J. Thromb. Haemost. 9, 653–663 (2011).

    CAS  PubMed  Google Scholar 

  18. Lacy, M. Q. et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood 118, 2970–2975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Leleu, X. et al. High response rates to pomalidomide and dexamethasone in patients with refractory myeloma, final analysis of IFM 2009–02. ASH Annual Meeting Abstracts 118, 812 (2011).

    Google Scholar 

  20. Richardson, P. G. et al. Randomized, open label phase 1/2 study of pomalidomide (POM) alone or in combination with low-dose dexamethasone (LoDex) in patients (pts) with relapsed and refractory multiple myeloma who have received prior treatment that includes lenalidomide (LEN) and bortezomib (BORT): phase 2 results. ASH Annual Meeting Abstracts 118, 634 (2011).

    Google Scholar 

  21. Greipp, P. R. et al. International staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).

    PubMed  Google Scholar 

  22. Dewald, G. W. et al. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood 106, 3553–3558 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stewart, A. K. & Fonseca, R. Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. J. Clin. Oncol. 23, 6339–6344 (2005).

    CAS  PubMed  Google Scholar 

  24. Avet-Loiseau, H. et al. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood 117, 2009–2011 (2011).

    CAS  PubMed  Google Scholar 

  25. Dimopoulos, M. A. et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. J. Clin. Oncol. 28, 4976–4984 (2010).

    PubMed  Google Scholar 

  26. Varettoni, M. et al. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann. Oncol. 21, 325–330 (2010).

    CAS  PubMed  Google Scholar 

  27. Short, K. D. et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia 25, 906–908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Richardson, P. G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617 (2003).

    CAS  PubMed  Google Scholar 

  29. Rajkumar, S. V. et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. 24, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  30. Moreau, P. et al. Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment prior to autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood 118, 5752–5758 (2011).

    CAS  PubMed  Google Scholar 

  31. Orlowski, R. Z. et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J. Clin. Oncol. 25, 3892–3901 (2007).

    CAS  PubMed  Google Scholar 

  32. Richardson, P. G. et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116, 679–686 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitsiades, N. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99, 4524–4530 (2002).

    Google Scholar 

  34. Richardson, P. G. et al. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J. Clin. Oncol. 27, 5713–5719 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stewart, A. K. et al. A randomized phase III trial of thalidomide and prednisone as maintenance therapy following autologous stem cell transplantation (ASCT) in patients with multiple myeloma (MM): The NCIC CTG MY.10 trial. ASH Annual Meeting Abstracts 116, 39 (2010).

    Google Scholar 

  36. Morgan, G. J. et al. The role of maintenance thalidomide therapy in multiple myeloma: MRC Myeloma IX results and meta-analysis. Blood 119, 7–15 (2011).

    PubMed  Google Scholar 

  37. Attal, M. et al. Maintenance treatment with lenalidomide after transplantation for MYELOMA: final analysis of the IFM 2005–02. ASH Annual Meeting Abstracts 116, 310 (2010).

    Google Scholar 

  38. McCarthy, P. L. et al. Phase III intergroup study of lenalidomide versus placebo maintenance therapy following single autologous hematopoietic stem cell transplantation (AHSCT) for multiple myeloma: CALGB 100104. ASH Annual Meeting Abstracts 116, 37 (2010).

    Google Scholar 

  39. Rajkumar, S. V. Treatment of multiple myeloma. Nat. Rev. Clin. Oncol. 8, 479–491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stewart, A. K. et al. Diagnostic evaluation of t(4;14) in multiple myeloma and evidence for clonal evolution. Leukemia 21, 2358–2359 (2007).

    CAS  PubMed  Google Scholar 

  41. Cremer, F. W. et al. Delineation of distinct subgroups of multiple myeloma and a model for clonal evolution based on interphase cytogenetics. Genes Chromosomes Cancer 44, 194–203 (2005).

    CAS  PubMed  Google Scholar 

  42. Chng, W. J., Ketterling, R. P. & Fonseca, R. Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosomes Cancer 45, 1111–1120 (2006).

    CAS  PubMed  Google Scholar 

  43. Shaughnessy, J. D. Jr. et al. Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3. Blood 118, 3512–3524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Buda, G. et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann. Hematol. 89, 1133–1140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nojima, M. et al. Genomic screening for genes silenced by DNA methylation revealed an association between RASD1 inactivation and dexamethasone resistance in multiple myeloma. Clin. Cancer Res. 15, 4356–4364 (2009).

    CAS  PubMed  Google Scholar 

  46. Bringhen, S. et al. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood 116, 4745–4753 (2010).

    CAS  PubMed  Google Scholar 

  47. Moreau, P. et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 12, 431–440 (2011).

    PubMed  Google Scholar 

  48. Zangari, M. et al. Deep vein thrombosis in patients with multiple myeloma treated with thalidomide and chemotherapy: effects of prophylactic and therapeutic anticoagulation. Br. J. Haematol. 126, 715–721 (2004).

    CAS  PubMed  Google Scholar 

  49. Palumbo, A. et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22, 414–423 (2008).

    CAS  PubMed  Google Scholar 

  50. Chen, C. et al. Expanded safety experience with lenalidomide plus dexamethasone in relapsed or refractory multiple myeloma. Br. J. Haematol. 146, 164–170 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Palumbo, A. et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22, 414–423 (2008).

    CAS  PubMed  Google Scholar 

  52. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  53. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  54. Chauhan, D. et al. Deubiquitylating enzyme USP-7, a novel therapeutic target in multiple myeloma. ASH Annual Meeting Abstracts 114, 610 (2009).

    Google Scholar 

  55. Chauhan, D. et al. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116, 4906–4915 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Parlati, F. et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114, 3439–3447 (2009).

    CAS  PubMed  Google Scholar 

  57. Vij, R. et al. Final results from the Bortezomib-naive group of PX-171-004, a phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory MM. ASH Annual Meeting Abstracts 118, 813 (2011).

    Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  59. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  60. Chauhan, D. et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin. Cancer Res. 17, 5311–5321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chauhan, D. et al. Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115, 834–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Richardson, P. G. et al. Phase 1 clinical evaluation of twice-weekly Marizomib (NPI-0052), a novel proteasome inhibitor, in patients with relapsed/refractory multiple myeloma (MM). ASH Annual Meeting Abstracts 118, 302 (2011).

    Google Scholar 

  63. Singh, A. V. et al. PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. Br. J. Haematol. 152, 155–163 (2011).

    CAS  PubMed  Google Scholar 

  64. Kuhn, D. J. et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113, 4667–4676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hideshima, T. et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl Acad. Sci. USA 102, 8567–8572 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Santo, L. et al. Selective inhibition of HDAC6 with a new prototype inhibitor (ACY-1215) overcomes bortezomib resistance in multiple myeloma (MM). ASH Annual Meeting Abstracts 116, 2997 (2010).

    Google Scholar 

  67. McMillin, D. W. et al. MLN4924, a novel investigational NEDD8 activating enzyme inhibitor, exhibits preclinical activity in multiple myeloma and Waldenstrom's macroglobulinemia through mechanism distinct from existing proteasome inhibitors. ASH Annual Meeting Abstracts 116, 2988 (2010).

    Google Scholar 

  68. Hideshima, T. et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96, 2943–2950 (2000).

    CAS  PubMed  Google Scholar 

  69. Mitsiades, N. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99, 4525–4530 (2002).

    CAS  PubMed  Google Scholar 

  70. Lacy, M. Q. et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J. Clin. Oncol. 27, 5008–5014 (2009).

    CAS  PubMed  Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  72. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  73. Santo, L. et al. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition. Oncogene 29, 2325–2336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ghobrial, I. M. et al. Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol. 12, 263–272 (2011).

    CAS  PubMed  Google Scholar 

  75. Raje, N. et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 104, 4188–4193 (2004).

    CAS  PubMed  Google Scholar 

  76. Mahindra, A. et al. Updated results of a phase I study of RAD001 in combination with lenalidomide in patients with relapsed or refractory multiple myeloma with pharmacodynamic and pharmacokinetic analysis. ASH Annual Meeting Abstracts 116, 3051 (2010).

    Google Scholar 

  77. Chauhan, D. et al. Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. 63, 6174–6177 (2003).

    CAS  PubMed  Google Scholar 

  78. Hideshima, T. et al. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 23, 8766–8776 (2004).

    CAS  PubMed  Google Scholar 

  79. Hideshima, T. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107, 4053–4062 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Richardson, P. G. et al. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J. Clin. Oncol. 29, 4243–4249 (2011).

    CAS  PubMed  Google Scholar 

  81. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  82. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  83. Cirstea, D. et al. Disruption of DEPTOR/mTORC1/mTORC2 signaling cascade using a novel selective mTOR kinase inhibitor AZD8055 results in growth arrest and apoptosis in multiple myeloma cells. ASH Annual Meeting Abstracts 116, 791 (2010).

    Google Scholar 

  84. McMillin, D. W. et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res. 69, 5835–5842 (2009).

    CAS  PubMed  Google Scholar 

  85. Mukherjee, S. et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J. Clin. Invest. 118, 491–504 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Breitkreutz, I. et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22, 1925–1932 (2008).

    CAS  PubMed  Google Scholar 

  87. Morgan, G. J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376, 1989–1999 (2010).

    CAS  PubMed  Google Scholar 

  88. Neri, P. et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin. Cancer Res. 13, 5903–5909 (2007).

    CAS  PubMed  Google Scholar 

  89. Raje, N. S. et al. Phase I study of LY2127399, a human anti-BAFF antibody, and bortezomib in patients with previously treated multiple myeloma [abstract]. ASCO Annual Meeting Abstracts, 2011. a29 (2011).

  90. Fulciniti, M. et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114, 371–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  92. Vallet, S. et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc. Natl Acad. Sci. USA 107, 5124–5129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bam, R. et al. Bruton's tyrosine kinase (BTK) is indispensable for myeloma cell migration towards SDF-1 and induction of osteoclastogenesis and osteolytic bone disease. ASH Annual Meeting Abstracts 116, 447 (2010).

    Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  95. Tai, Y. T. et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112, 1329–1337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Richardson, P. G. et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: interim results of a phase 2 study. ASH Annual Meeting Abstracts 116, 986 (2010).

    Google Scholar 

  97. de Weers, M. et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. 186, 1840–1848 (2011).

    CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  99. Ikeda, H. et al. The monoclonal antibody nBT062 conjugated to cytotoxic maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res. 15, 4028–4037 (2009).

    CAS  PubMed  Google Scholar 

  100. Chanan-Khan, A. A. et al. Phase I study of BT062 given as repeated single dose once every 3 weeks in patients with relapsed or relapsed/refractory multiple myeloma. ASH Annual Meeting Abstracts 114, 1862 (2009).

    Google Scholar 

  101. Alici, E. IPH-2101, a fully human anti-NK-cell inhibitory receptor mAb for the potential treatment of hematological cancers. Curr. Opin. Mol. Ther. 12, 724–733 (2010).

    CAS  PubMed  Google Scholar 

  102. Shi, J. et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol. 143, 641–653 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Rosenblatt, J. et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 117, 393–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Szmania, S. et al. Immunization with a recombinant MAGE-A3 protein after high-dose therapy for myeloma. J. Immunother. 30, 847–854 (2007).

    PubMed  Google Scholar 

  105. Blotta, S. et al. Identification of novel antigens with induced immune response in monoclonal gammopathy of undetermined significance. Blood 114, 3276–3284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bae, J. et al. Identification of novel myeloma-specific XBP1 peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma. Leukemia 25, 1610–1619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA 104, 4048–4053 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nefedova, Y., Sullivan, D. M., Bolick, S. C., Dalton, W. S. & Gabrilovich, D. I. Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111, 2220–2229 (2008).

    CAS  PubMed  Google Scholar 

  109. Sukhdeo, K. et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc. Natl Acad. Sci. USA 104, 7516–7521 (2007).

    PubMed  PubMed Central  Google Scholar 

  110. Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009).

    CAS  PubMed  Google Scholar 

  111. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hadari, Y. & Schlessinger, J. FGFR3-targeted mAb therapy for bladder cancer and multiple myeloma. J. Clin. Invest. 119, 1077–1079 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Qing, J. et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J. Clin. Invest. 119, 1216–1229 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Marango, J. et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 111, 3145–3154 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McMillin, D. W. et al. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat. Med. 16, 483–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  119. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  120. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  121. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  122. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  123. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

Download references

Acknowledgements

The authors wish to acknowledge the assistance of Dr. Diana Cirstea, Dana–Farber Cancer Institute for help with preparation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

A. Mahindra, J. Laubach and K. Anderson researched data for the article, provided substantial contributions to the discussion of content and wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kenneth Anderson.

Ethics declarations

Competing interests

A. Mahindra is on the Advisory Board for Millennium Pharmaceuticals. N. Raje is on the Advisory Board for Amgen, Celgene, Millennium Pharmaceuticals and Novartis, and receives research support from Acetylon Pharmaceuticals. N. Munshi is on the Advisory Board for Celgene, Millennium Pharmaceuticals, Novartis and Onyx Pharmaceuticals. P. G. Richardson is on the Advisory Board for Bristol-Myers Squibb, Celgene, Johnson & Johnson, Millennium Pharmaceuticals and Novartis. K. Anderson is a consultant for Bristol-Myers Squibb, Celgene, Merck, Millennium Pharmaceuticals, Novartis and Onyx Pharmaceuticals, and is a stockholder/director for Acetylon Pharmaceuticals and OncoPep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahindra, A., Laubach, J., Raje, N. et al. Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 9, 135–143 (2012). https://doi.org/10.1038/nrclinonc.2012.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing