Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenging issues in pediatric oncology

Abstract

Improvements in protocol-driven clinical trials and supportive care for children and adolescents with cancer have reduced mortality rates by more than 50% over the past three decades. Overall, the 5-year survival rate for patients with pediatric cancer has increased to approximately 80%. Recognition of the biological heterogeneity within specific subtypes of cancer, the discovery of genetic lesions that drive malignant transformation and cancer progression, and improved understanding of the basis of drug resistance will undoubtedly catalyze further advances in risk-directed treatments and the development of targeted therapies, boosting the cure rates further. Emerging new treatments include novel formulations of existing chemotherapeutic agents, monoclonal antibodies against cancer-associated antigens, and molecular therapies that target genetic lesions and their associated signaling pathways. Recent findings that link pharmacogenomic variations with drug exposure, adverse effects, and efficacy should accelerate efforts to develop personalized therapy for individual patients. Finally, palliative care should be included as an essential part of cancer management to prevent and relieve the suffering and to improve the quality of life of patients and their families.

Key Points

  • Prophylactic cranial irradiation can be omitted from the treatment of patients with acute lymphoblastic or myeloid leukemia, with the use of effective systemic and intrathecal therapy

  • Vigilant supportive care can reduce morbidity and mortality, and improve event-free survival of acute myeloid leukemia

  • The next generation of treatment for brain tumors will be tailored to specific molecular subtypes of disease to improve the cure rates and reduce the long-term sequela of therapy

  • The cure rates have improved dramatically over the past three decades for patients with localized solid tumors and hematologic cancers

  • Patients with disseminated disease continue to fare poorly and some are now receiving targeted therapies against specific molecular alterations

  • Integration of palliative care into the ongoing care of children with cancer improves the quality of pediatric oncology care

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival rates for different cancers among adolescents and young adults.
Figure 2: Survival rates for different cancers in children.

Similar content being viewed by others

References

  1. The cancer genome census. Wellcome Trust Sanger Institute [online], (2011).

  2. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. National Cancer Institute. Surveillance Epidemiology and End Results. Previous Version: SEER Cancer Statistics Review, 1975–2007 [online], (2010).

  4. Pui, C. H., Carroll, W. L., Meshinchi, S. & Arceci, R. J. Biology, risk stratification and therapy of pediatric acute leukemias: an update. J. Clin. Oncol. 29, 551–565 (2011).

    Article  PubMed  Google Scholar 

  5. Nachman, J. B. et al. Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment: a report from the Children's Oncology Group. J. Clin. Oncol. 27, 5189–5194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pui, C. H. et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J. Clin. Oncol. 29, 386–391 (2011).

    Article  PubMed  Google Scholar 

  7. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pui, C. H. & Jeha, S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat. Rev. Drug. Discov. 6, 149–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Pui, C. H. & Howard, S. C. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 9, 257–268 (2008).

    Article  PubMed  Google Scholar 

  10. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Veerman, A. J. et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol. 10, 957–966 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schrappe, M. et al. Dexamethasone in induction can eliminate one third of all relapses in childhood acute lymphoblastic leukemia (ALL): Results of an international randomized trial in 3655 patients (Trial AEIOP-BFM ALL 2000) [abstract]. Am. Soc. Hematol. Ann. Meeting 112, a7 (2008).

    Google Scholar 

  14. Pui, C. H. et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359, 1909–1915 (2002).

    Article  PubMed  Google Scholar 

  15. Pieters, R. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370, 240–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Dreyer, Z. E. et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children's Oncology Group. J. Clin. Oncol. 29, 214–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, P., Levis, M., McIntyre, E., Griesemer, M. & Small, D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia 20, 1368–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Schafer, E. et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115, 4798–4809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 10, 125–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cario, G. et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115, 5393–5397 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pui, C. H., Robison, L. L. & Look, A. T. Acute lymphoblastic leukaemia. Lancet 371, 1030–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Lee-Sherick, A. B. et al. Targeting paediatric acute lymphoblastic leukaemia: novel therapies currently in development. Br. J. Haematol. 151, 295–311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawedia, J. D. et al. Pharmacokinetic, pharmacodynamic and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 117, 2340–2347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubnitz, J. E. et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 11, 543–552 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, C. J. et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J. Clin. Oncol. 28, 2674–2681 (2010).

    Article  PubMed  Google Scholar 

  30. Pratz, K. W. et al. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115, 1425–1432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubnitz, J. E. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. 28, 955–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hudson, M. M. et al. Noninvasive evaluation of late anthracycline cardiac toxicity in childhood cancer survivors. J. Clin. Oncol. 25, 3635–3643 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Jeha, S. et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute myeloid leukemia. J. Clin. Oncol. 27, 4392–4397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurt, B. et al. Prophylactic antibiotics reduce morbidity due to septicemia during intensive treatment for pediatric acute myeloid leukemia. Cancer 113, 376–382 (2008).

    Article  PubMed  Google Scholar 

  35. Cornely, O. A. et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med. 356, 348–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Ehlers, S. et al. Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J. Clin. Oncol. 28, 2591–2597 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

    Article  PubMed  Google Scholar 

  38. Hughes, E. N. et al. Medulloblastoma at the joint center for radiation therapy between 1968 and 1984. The influence of radiation dose on the patterns of failure and survival. Cancer 61, 1992–1998 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Kool, M. et al. Integrated genomics identifies 5 medulloblastoma subtypes with distinct molecular profiles, pathway signatures and clinicopathological features. PLoS ONE 3, e3068 (2008).

    Article  CAS  Google Scholar 

  41. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  42. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tamburrini, G. et al. Survival following treatment for intracranial ependymoma: a review. Childs Nerv. Syst. 25, 1303–1312 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Merchant, T. E. et al. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 10, 258–266 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Korshunov, A. et al. Molecular staging of intracranial ependymoma in children and adults. J. Clin. Oncol. 28, 3182–3190 (2010).

    Article  PubMed  Google Scholar 

  46. Johnson, R. A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puget, S. et al. Candidate genes on chromosome 9q33–34 involved in the progression of childhood ependymomas. J. Clin. Oncol. 27, 1884–1892 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Kilday, J. P. et al. Pediatric ependymoma: biological perspectives. Mol. Cancer Res. 7, 765–786 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Broniscer, A. Past, present, and future strategies in the treatment of high-grade glioma in children. Cancer Invest. 24, 77–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Broniscer, A. et al. Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J. Neurooncol. 76, 313–319 (2006).

    Article  PubMed  Google Scholar 

  51. Gururangan, S. et al. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J. Clin. Oncol. 28, 3069–3075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  54. Zarghooni, M. et al. Whole genome profiling of pediatric intrinsic diffuse pontine gliomas highlight platelet derived growth factor receptor α and poly (ADP-ribose) polymerase as potential therapeutic targets. J. Clin. Oncol. 28, 1337–1344 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Paugh, B. S. et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 28, 3061–3068 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gajjar, A. et al. Low-grade astrocytoma: a decade of experience at St. Jude Children's Research Hospital. J. Clin. Oncol. 15, 2792–2799 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Armstrong, G. T. et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol. 13, 223–234 (2011).

    Article  PubMed  Google Scholar 

  58. Forshew, T. et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J. Pathol. 218, 172–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bar, E. E., Lin, A., Tihan, T., Burger, P. C. & Eberhart, C. G. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J. Neuropathol. Exp. Neurol. 67, 878–887 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Sanders, R. P. et al. High-grade astrocytoma in very young children. Pediatr. Blood Cancer 49, 888–893 (2007).

    Article  PubMed  Google Scholar 

  64. Tekautz, T. M. et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J. Clin. Oncol. 23, 1491–1499 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Judkins, A. R. et al. Immunohistochemistry analysis of hSNFS/INI 1 in pediatric CNS neoplasms. Am. J. Surg. Path. 26, 644-650 (2004).

    Article  Google Scholar 

  66. Biegel, J. A. et al. Alterations of the hSNFS/INI 1 gene in central nervous system atypical teratoid tumors and renal and extra renal rhabdoid tumors. Clin. Cancer. Res. 8, 3461–3467 (2002).

    CAS  PubMed  Google Scholar 

  67. Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baker, D. L. et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N. Engl. J. Med. 363, 1313–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, A. L. et al. Anti-GD2 Antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mossé, Y. P., Wood, A. & Maris, J. M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res. 15, 5609–5614 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Maris, J. M. et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr. Blood Cancer 55, 26–34 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Morton, C. L. et al. Initial testing of the replication competent Seneca Valley virus (NTX-010) by the pediatric preclinical testing program. Pediatr. Blood Cancer 55, 295–303 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Oberlin, O. et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J. Clin. Oncol. 26, 2384–2389 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cao, L. et al. Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody. Cancer Res. 68, 8039–8048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zibat, A. et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 29, 6323–6330 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Davicioni, E. et al. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res. 66, 6936–6946 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Taylor, J. G. 6th et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest. 119, 3395–3407 (2009).

    CAS  PubMed  Google Scholar 

  78. Wachtel, M. & Schäfer, B. W. Targets for cancer therapy in childhood sarcomas. Cancer Treat. Rev. 36, 318–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Zeng, F. Y. et al. Glycogen synthase kinase 3 regulates PAX3–FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells. Biochem. Biophys. Res. Commun. 391, 1049–1055 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Davicioni, E. et al. Gene expression profiling for survival prediction in pediatric rhabdomyosarcomas: a report from the Children's Oncology Group. J. Clin. Oncol. 28, 1240–1246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agaram, N. P. et al. Molecular characterization of pediatric gastrointestinal stromal tumors. Clin. Cancer Res. 14, 3204–3215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loh, M. L. et al. Treatment of infantile fibrosarcoma with chemotherapy and surgery: results from the Dana-Farber Cancer Institute and Children's Hospital, Boston. J. Pediatr. Hematol. Oncol. 24, 722–726 (2002).

    Article  PubMed  Google Scholar 

  85. Pappo, A. S. & Janeway, K. A. Pediatric gastrointestinal stromal tumors. Hematol. Oncol. Clin. North Am. 23, 15–34 (2009).

    Article  PubMed  Google Scholar 

  86. Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutation. Proc. Natl Acad. Sci. USA 108, 314–318 (2011).

    Article  PubMed  Google Scholar 

  87. Balamuth, N. J. & Womer, R. B. Ewing's sarcoma. Lancet Oncol. 11, 184–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Pappo, A. S. et al. Activity of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF1R) in patients with recurrent or refractory Ewing's sarcoma family of tumors (ESFT): results of a phase II SARC study [abstract]. J. Clin. Oncol. 28, a10000 (2010).

    Article  Google Scholar 

  89. Carol, H. et al. Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr. Blood Cancer 53, 1255–1263 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Meyers, P. A. et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol. 23, 2004–2011 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Khanna, C. Novel targets with potential therapeutic applications in osteosarcoma. Curr. Oncol. Rep. 10, 350–358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kolb, E. A. et al. R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr. Blood Cancer 55, 67–75 (2010).

    Article  PubMed  Google Scholar 

  93. Ahmed, N. et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol. Ther. 17, 1779–1787 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dunkel, I. J. et al. Intensive multimodality therapy for patients with stage 4a metastatic retinoblastoma. Pediatr. Blood Cancer 55, 55–59 (2010).

    PubMed  Google Scholar 

  95. Broaddus, E., Topham, A. & Singh, A. D. Survival with retinoblastoma in the USA: 1975–2004. Br. J. Ophthalmol. 93, 24–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Shields, C. L. & Shields, J. A. Retinoblastoma management: advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy. Curr. Opin. Ophthalmol. 21, 203–212 (2010).

    Article  PubMed  Google Scholar 

  97. Woo, K. I. & Harbour, J. W. Review of 676 second primary tumors in patients with retinoblastoma: association between age at onset and tumor type. Arch. Ophthalmol. 128, 865–870 (2010).

    Article  PubMed  Google Scholar 

  98. Nemeth, K. M. et al. Subconjunctival carboplatin and systemic topotecan treatment in preclinical models of retinoblastoma. Cancer 117, 421–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Abramson, D. H., Dunkel, I. J., Brodie, S. E., Marr, B. & Gobin, Y. P. Superselective ophthalmic artery chemotherapy as primary treatment for retinoblastoma (chemosurgery). Ophthalmology 117, 1623–1629 (2010).

    Article  PubMed  Google Scholar 

  100. Chévez-Barrios, P. et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J. Clin. Oncol. 23, 7927–7935 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Carcaboso, A. M. et al. Episcleral implants for topotecan delivery to the posterior segment of the eye. Invest. Ophthalmol. Vis. Sci. 51, 2126–2134 (2010).

    Article  PubMed  Google Scholar 

  102. Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. DiGiammarino, E. L. et al. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat. Struct. Biol. 9, 12–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Collins, J. J. et al. The measurement of symptoms in children with cancer. J. Pain Symptom Manage. 19, 363–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Ullrich, C. K. et al. End-of-life experience of children undergoing stem cell transplantation for malignancy: parent and provider perspectives and patterns of care. Blood 115, 3879–3885 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Klassen, A. F. et al. Impact of caring for a child with cancer on parents' health-related quality of life. J. Clin. Oncol. 26, 5884–5889 (2008).

    Article  PubMed  Google Scholar 

  108. Maurer, S. H. et al. Decision making by parents of children with incurable cancer who opt for enrollment on a phase I trial compared with choosing a do not resuscitate/terminal care option. J. Clin. Oncol. 28, 3292–3298 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dussel, V. et al. Looking beyond where children die: determinants and effects of planning a child's location of death. J. Pain Symptom Manage. 37, 33–43 (2009).

    Article  PubMed  Google Scholar 

  110. Kreicbergs, U. et al. Anxiety and depression in parents 4–9 years after the loss of a child owing to a malignancy: a population-based follow-up. Psychol. Med. 34, 1431–1441 (2004).

    Article  PubMed  Google Scholar 

  111. Bluebond-Langner, M., Belasco, J. B., Goldman, A. & Belasco, C. Understanding parents' approaches to care and treatment of children with cancer when standard therapy has failed. J. Clin. Oncol. 25, 2414–2419 (2007).

    Article  PubMed  Google Scholar 

  112. Mack, J. W. et al. Parents' views of cancer-directed therapy for children with no realistic chance for cure. J. Clin. Oncol. 26, 4759–4764 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vickers, J., Thompson, A., Collins, G. S., Childs, M. & Hain, R. Place and provision of palliative care for children with progressive cancer: a study by the Paediatric Oncology Nurses' Forum/United Kingdom Children's Cancer Study Group Palliative Care Working Group. J. Clin. Oncol. 25, 4472–4476 (2007).

    Article  PubMed  Google Scholar 

  114. Wolfe, J. et al. Easing of suffering in children with cancer at the end of life: is care changing? J. Clin. Oncol. 26, 1717–1723 (2008).

    Article  PubMed  Google Scholar 

  115. Ferris, F. D. et al. Palliative cancer care a decade later: accomplishments, the need, next steps—from the American Society of Clinical Oncology. J. Clin. Oncol. 27, 3052–3058 (2009).

    Article  PubMed  Google Scholar 

  116. Kane, J. R. Pediatric palliative care moving forward: empathy, competence, quality, and the need for systematic change. J. Palliat. Med. 9, 847–849 (2006).

    Article  PubMed  Google Scholar 

  117. Temel, J. et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N. Engl. J. Med. 363, 733–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Baker, J. N., Barfield, R., Hinds, P. S. & Kane, J. R. A process to facilitate decision making in pediatric stem cell transplantation: the individualized care planning and coordination model. Biol. Blood Marrow Transplant. 13, 245–254 (2007).

    Article  PubMed  Google Scholar 

  119. Baker, J. N. et al. Integration of palliative care practices into the ongoing care of children with cancer: individualized care planning and coordination. Pediatr. Clin. North Am. 55, 223–250 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hui, D. et al. Availability and integration of palliative care at US cancer centers. JAMA 303, 1054–1061 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported in part by grant CA21765 and GM092666 from the National Institutes of Health, and by the American Lebanese Syrian Associated charities. C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the research of data, discussion of content, writing the Review and revising the manuscript before submission.

Corresponding author

Correspondence to Ching-Hon Pui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pui, CH., Gajjar, A., Kane, J. et al. Challenging issues in pediatric oncology. Nat Rev Clin Oncol 8, 540–549 (2011). https://doi.org/10.1038/nrclinonc.2011.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.95

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer