Review Article | Published:

MicroRNAs in body fluids—the mix of hormones and biomarkers

Nature Reviews Clinical Oncology volume 8, pages 467477 (2011) | Download Citation

Abstract

Since the discovery of microRNAs (miRNAs), the study of these small noncoding RNAs has steadily increased and more than 10,000 papers have already been published. The great interest in miRNAs reflects their central role in gene-expression regulation and the implication of miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac, immune-related and other diseases. Another avenue of current research is the study of circulating miRNAs in serum, plasma, and other body fluids—miRNAs may act not only within cells, but also at other sites within the body. The presence of miRNAs in body fluids may represent a gold mine of noninvasive biomarkers in cancer. Since deregulated miRNA expression is an early event in tumorigenesis, measuring circulating miRNA levels may also be useful for early cancer detection, which can contribute greatly to the success of treatment. In this Review, we discuss the role of fluid-expressed miRNAs as reliable cancer biomarkers and treatment-response predictors as well as potential new patient selection criteria for clinical trials. In addition, we explore the concept that miRNAs could function as hormones.

Key points

  • A single microRNA (miRNA) can target and regulate hundreds or thousands of mRNAs; aberrant miRNA expression is involved in the initiation of many diseases, including cancer

  • MiRNAs are potentially useful as biomarkers in cancer diagnosis, prognosis and response to treatment owing to the unique expression profile of each tumor and limited complex transcriptional and translational modifications

  • The discovery of miRNAs in body fluids opens up the possibility of using them as non-invasive biomarkers in cancer detection and as predictors of therapy response in clinical trials

  • Standardized methods with well-established parameters for miRNA detection are necessary to indicate cancer stage, response to treatment, outcome and cancer recurrence

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

  2. 2.

    , & Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

  3. 3.

    et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

  4. 4.

    et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

  5. 5.

    et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

  6. 6.

    , & Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

  7. 7.

    MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676 (2003).

  8. 8.

    et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

  9. 9.

    MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

  10. 10.

    , , , & MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

  11. 11.

    , & MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100, 9779–9784 (2003).

  12. 12.

    et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

  13. 13.

    , , & Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

  14. 14.

    , , , & Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

  15. 15.

    , & MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006).

  16. 16.

    , , & Substrate requirements for let 7 function in the developing zebrafish embryo. Nucleic Acids Res. 32, 6284–6291 (2004).

  17. 17.

    , & Target mRNAs are repressed as efficiently by microRNA binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA 104, 9667–9672 (2007).

  18. 18.

    et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res. 19, 1175–1183 (2009).

  19. 19.

    , , , & MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA 105, 1608–1613 (2008).

  20. 20.

    et al. Dicer, Drosha, and outcome in patients with ovarian cancer. N. Engl. J. Med. 359, 2641–2650 (2008).

  21. 21.

    et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010).

  22. 22.

    et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat. Genet. 41, 365–370 (2009).

  23. 23.

    & MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

  24. 24.

    , & Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

  25. 25.

    , & Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

  26. 26.

    et al. Multiple microRNAs modulate p21 Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29, 2302–2308 (2010).

  27. 27.

    , , & Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

  28. 28.

    et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).

  29. 29.

    et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

  30. 30.

    & MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–66 (2006).

  31. 31.

    et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

  32. 32.

    , , , & Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003).

  33. 33.

    et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

  34. 34.

    et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351–1358 (2005).

  35. 35.

    et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537–2545 (2006).

  36. 36.

    et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 102, 19075–19080 (2005).

  37. 37.

    et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

  38. 38.

    et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

  39. 39.

    et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 26, 462–469 (2008).

  40. 40.

    et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007).

  41. 41.

    et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007).

  42. 42.

    et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

  43. 43.

    , & Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

  44. 44.

    , & mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem. Cell Biol. 42, 1348–1354 (2010).

  45. 45.

    Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8, 843–852 (2009).

  46. 46.

    et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298–1307 (2007).

  47. 47.

    et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590–7595 (2007).

  48. 48.

    et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin. Cancer Res. 14, 2690–2695 (2008).

  49. 49.

    et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23, 862–876 (2009).

  50. 50.

    , , & Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793 (2008).

  51. 51.

    , , , & Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin. Biol. Ther. 7, 1009–1019 (2007).

  52. 52.

    et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

  53. 53.

    et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

  54. 54.

    et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008).

  55. 55.

    et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12, 457–466 (2007).

  56. 56.

    , & Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300–3305 (2007).

  57. 57.

    et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535–8540 (2008).

  58. 58.

    et al. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 68, 2530–2537 (2008).

  59. 59.

    et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev. Res. (Phila.) 1, 460–469 (2008).

  60. 60.

    et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69, 5970–5977 (2009).

  61. 61.

    , , , & Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int. J. Cancer 127, 589–597 (2010).

  62. 62.

    et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 105, 7269–7274 (2008).

  63. 63.

    et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

  64. 64.

    et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

  65. 65.

    et al. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol. Rep. 23, 113–119 (2010).

  66. 66.

    et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

  67. 67.

    , , , & Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526–3536 (2009).

  68. 68.

    et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141, 672–675 (2008).

  69. 69.

    et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

  70. 70.

    et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE 4, e6229 (2009).

  71. 71.

    et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

  72. 72.

    et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol. 28, 1721–1726 (2010).

  73. 73.

    et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol. 112, 55–59 (2009).

  74. 74.

    et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58, 1375–1381 (2009).

  75. 75.

    et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 127, 118–126 (2010).

  76. 76.

    et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 102, 1174–1179 (2010).

  77. 77.

    et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 251, 499–505 (2010).

  78. 78.

    et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila.) 2, 807–813 (2009).

  79. 79.

    et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol. 3, 109–113 (2010).

  80. 80.

    et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 14, 529–538 (2009).

  81. 81.

    et al. Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem. Biophys. Res. Commun. 400, 89–93 (2010).

  82. 82.

    et al. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin. Cancer Res. 14, 2588–2592 (2008).

  83. 83.

    et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl Acad. Sci. USA 108, 3713–3718 (2011).

  84. 84.

    et al. Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4, e5532 (2009).

  85. 85.

    et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 108, 6573–6578 (2011).

  86. 86.

    et al. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 15, 5473–5477 (2009).

  87. 87.

    et al. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 16, 360–364 (2010).

  88. 88.

    et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28, 655–661 (2010).

  89. 89.

    et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

  90. 90.

    , , & Circulating microRNAs in breast cancer and healthy subjects. BMC Res. Notes 2, 89 (2009).

  91. 91.

    , & Detection of microRNAs in dried serum blots. Anal. Biochem. 407, 147–149 (2010).

  92. 92.

    et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

  93. 93.

    et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 50, 564–573 (2004).

  94. 94.

    Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol. Direct. 2, 35–49 (2007).

  95. 95.

    , & Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

  96. 96.

    et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694 (2008).

  97. 97.

    et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16, 34–38 (2010).

  98. 98.

    , & Binding of specific peroxidase-labeled antibody to placental-type phosphatase on tumor-derived membrane fragments. Cancer Res. 40, 4064–4069 (1980).

  99. 99.

    & MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008).

  100. 100.

    et al. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 (2009).

  101. 101.

    et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

  102. 102.

    et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5, e13247 (2010).

  103. 103.

    & MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 9, 703–711 (2009).

  104. 104.

    et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

  105. 105.

    Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE 5, e13515 (2010).

  106. 106.

    et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

  107. 107.

    et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38, 7248–7259 (2010).

  108. 108.

    et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

  109. 109.

    et al. Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 54, 482–490 (2008).

  110. 110.

    et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).

  111. 111.

    et al. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50, 298–301 (2010).

  112. 112.

    et al. A novel method to monitor the expression of microRNAs. Mol. Biotechnol. 32, 197–204 (2006).

  113. 113.

    et al. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm. Genome 19, 526–540 (2008).

  114. 114.

    , & Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol. Cancer Res. Treat. 9, 123–138 (2010).

  115. 115.

    , & Interference of heparin with the polymerase chain reaction. Biotechniques 9, 166 (1990).

  116. 116.

    & Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14, 844–852 (2008).

  117. 117.

    , & MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer 46, 298–311 (2010).

  118. 118.

    et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann. Oncol. 19, 1053–1059 (2008).

  119. 119.

    et al. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3, 317–324 (2006).

  120. 120.

    et al. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS ONE 3, e1908 (2008).

  121. 121.

    et al. Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71, 326–331 (2011).

  122. 122.

    et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res. 70, 5226–5237 (2010).

  123. 123.

    et al. Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 6, e17745 (2011).

  124. 124.

    et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE 4, e7405 (2009).

  125. 125.

    et al. Serum miR-1467a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 394, 184–188 (2010).

  126. 126.

    The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135, 33–36 (1993).

Download references

Acknowledgements

G. A. Calin is supported as a Fellow at The University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar and by the CLL Global Research Foundation. Work in G. A. Calin's laboratory is supported in part by the National Institutes of Health, a Department of Defense Breast Cancer Idea Award, Developmental Research Awards in MD Anderson's Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia SPOREs, a CTT/3I-TD grant, a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant, and MD Anderson's Cancer Center Support Grant CA016672 and the Arnold Foundation. This work was also supported, in part, by U54 CA151668. We would like to thank Maude Veech (MD Anderson Cancer Center) for help with the editing of this manuscript. We apologize to all colleagues whose work was not cited because of space limitations.  C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Affiliations

  1. The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA

    • Maria Angelica Cortez
    • , Carlos Bueso-Ramos
    • , Jana Ferdin
    • , Gabriel Lopez-Berestein
    • , Anil K. Sood
    •  & George A. Calin

Authors

  1. Search for Maria Angelica Cortez in:

  2. Search for Carlos Bueso-Ramos in:

  3. Search for Jana Ferdin in:

  4. Search for Gabriel Lopez-Berestein in:

  5. Search for Anil K. Sood in:

  6. Search for George A. Calin in:

Contributions

M. A. Cortez and G. A. Calin devised, wrote and edited the article, J. Ferdin contributed to writing and C. Bueso-Ramos, G. Lopez-Berestein, and A. K. Sood contributed substantially to the content of the article through in-depth discussions and editing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to George A. Calin.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrclinonc.2011.76

Further reading