The bone marrow stroma in hematological neoplasms—a guilty bystander

Abstract

In the setting of hematological neoplasms, changes in the bone marrow (BM) stroma might arise from pressure exerted by the neoplastic clone in shaping a supportive microenvironment, or from chronic perturbation of the BM homeostasis. Under such conditions, alterations in the composition of the BM stroma can be profound, and could emerge as relevant prognostic factors. In this Review, we delineate the multifaceted contribution of the BM stroma to the pathobiology of several hematological neoplasms, and discuss the impact of stromal modifications on the natural course of these diseases. Specifically, we highlight the involvement of BM stromal components in lymphoid and myeloid malignancies, and present the most relevant processes responsible for remodeling the BM stroma. The role of bystander BM stromal elements in the setting of hematological neoplasms is discussed, strengthening the rationale for treatment strategies that target the BM stroma.

Key Points

  • BM stromal changes in lymphoid malignancies are engendered by neoplastic cells to support their localization, proliferation and survival, and to suppress effective antitumor immune responses

  • Lymphoid neoplastic clones are able to manipulate the BM environment either directly, or through the co-optation of accessory cells such as macrophages and mast cells

  • Treatment strategies interfering with the axes involved in crosstalk between neoplastic cells and BM stroma may prove effective in lymphoid malignancies, when combined with therapies that target the neoplastic clones

  • Stromal alterations associated with myeloid malignancies, such as BM fibrosis, could be profound and negatively influence the clinical course of the disease and response to therapy

  • Drugs that could potentially control the proliferation of BM stromal components, such as tyrosine kinase inhibitors, proteasome inhibitors, and immunomodulatory agents are promising for the treatment of myeloid malignancies

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: BM stroma and lymphoid infiltration.
Figure 2: Schematic representation of the interactions between lymphoid neoplastic cells and the BM stromal microenvironment.
Figure 3: Bone marrow stromal changes in myeloid malignancies.
Figure 4: Possible suppressive mechanisms of BM stromal cells.

References

  1. 1

    Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009).

    CAS  PubMed  Google Scholar 

  2. 2

    Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006).

    CAS  Google Scholar 

  3. 3

    Ribatti, D. Bone marrow vascular niche and the control of tumor growth in hematological malignancies. Leukemia 24, 1247–1248 (2010).

    CAS  Google Scholar 

  4. 4

    Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  5. 5

    Blank, U., Karlsson, G. & Karlsson, S. Signaling pathways governing stem-cell fate. Blood 111, 492–503 (2008).

    CAS  Google Scholar 

  6. 6

    Grabher, C., von Boehmer, H. & Look, A. T. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 6, 347–359 (2006).

    CAS  Google Scholar 

  7. 7

    Hadland, B. K. et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097–3105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Torlakovic, E., Tenstad, E., Funderud, S. & Rian, E. CD10+ stromal cells form B-lymphocyte maturation niches in the human bone marrow. J. Pathol. 205, 311–317 (2005).

    Google Scholar 

  9. 9

    Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Wei, J. et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13, 483–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Mesa, R. A., Hanson, C. A., Rajkumar, S. V., Schroeder, G. & Tefferi, A. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood 96, 3374–3380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Thiele, J. & Kvasnicka, H. M. Grade of bone marrow fibrosis is associated with relevant hematological findings—a clinicopathological study on 865 patients with chronic idiopathic myelofibrosis. Ann. Hematol. 85, 226–232 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Vener, C. et al. Prognostic implications of the European consensus for grading of bone marrow fibrosis in chronic idiopathic myelofibrosis. Blood 111, 1862–1865 (2008).

    CAS  Google Scholar 

  15. 15

    Della Porta, M. G. et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J. Clin. Oncol. 27, 754–762 (2009).

    Google Scholar 

  16. 16

    Lambertenghi-Deliliers, G. et al. Incidence and histological features of bone marrow involvement in malignant lymphomas. Ann. Hematol. 65, 61–65 (1992).

    CAS  Google Scholar 

  17. 17

    Schmid, C. & Isaacson, P. G. Bone marrow trephine biopsy in lymphoproliferative disease. J. Clin. Pathol. 45, 745–750 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Fend, F. & Kremer, M. Diagnosis and classification of malignant lymphoma and related entities in the bone marrow trephine biopsy. Pathobiology 74, 133–143 (2007).

    Google Scholar 

  19. 19

    Vega, F. et al. The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumours. Br. J. Haematol. 117, 569–576 (2002).

    Google Scholar 

  20. 20

    Florena, A. M. et al. Immunophenotypic profile and role of adhesion molecules in splenic marginal zone lymphoma with bone marrow involvement. Leuk. Lymphoma 47, 49–57 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Tripodo, C. et al. Gamma-delta T-cell lymphomas. Nat. Rev. Clin. Oncol. 6, 707–717 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Buchner, M. et al. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood 115, 4497–4506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Piccaluga, P. P. et al. Gene expression analysis provides a potential rationale for revising the histological grading of follicular lymphomas. Haematologica 93, 1033–1038 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Khokhar, F. A. et al. Angioimmunoblastic T-cell lymphoma in bone marrow: a morphologic and immunophenotypic study. Hum. Pathol. 41, 79–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ilgenfritz, R. B. et al. Correlation between molecular and histopathological diagnoses of B cell lymphomas in bone marrow biopsy and aspirates. J. Clin. Pathol. 62, 357–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Skinnider, B. F., Connors, J. M. & Gascoyne, R. D. Bone marrow involvement in T-cell-rich B-cell lymphoma. Am. J. Clin. Pathol. 108, 570–578 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gloghini, A., Colombatti, A., Bressan, G. & Carbone, A. Basement membrane components in lymphoid follicles: immunohistochemical demonstration and relationship to the follicular dendritic cell network. Hum. Pathol. 20, 1001–1007 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Li, Q. et al. Potential roles of follicular dendritic cell-associated osteopontin in lymphoid follicle pathology and repair and in B cell regulation in HIV-1 and SIV infection. J. Infect. Dis. 192, 1269–1276 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Yoon, S. O., Zhang, X., Berner, P., Blom, B. & Choi, Y. S. Notch ligands expressed by follicular dendritic cells protect germinal center B cells from apoptosis. J. Immunol. 183, 352–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Ayala, F., Dewar, R., Kieran, M. & Kalluri, R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 23, 2233–2241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Colmone, A. et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322, 1861–1865 (2008).

    CAS  Google Scholar 

  32. 32

    Negaard, H. F. et al. Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors. Leukemia 23, 162–169 (2009).

    CAS  Google Scholar 

  33. 33

    Maffei, R. et al. Angiopoietin-2 plasma dosage predicts time to first treatment and overall survival in chronic lymphocytic leukemia. Blood 116, 584–592 (2010).

    CAS  Google Scholar 

  34. 34

    Piccaluga, P. P. et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 67, 10703–10710 (2007).

    CAS  Google Scholar 

  35. 35

    Zucchetto, A. et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res. 69, 4001–4009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Tripodo, C. et al. Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma. Am. J. Pathol. 177, 792–802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Treanor, B. et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32, 187–199 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Franco, V., Tripodo, C., Rizzo, A., Stella, M. & Florena, A. M. Bone marrow biopsy in Hodgkin's lymphoma. Eur. J. Haematol. 73, 149–155 (2004).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    Thiele, J., Zirbes, T. K., Kvasnicka, H. M. & Fischer, R. Focal lymphoid aggregates (nodules) in bone marrow biopsies: differentiation between benign hyperplasia and malignant lymphoma—a practical guideline. J. Clin. Pathol. 52, 294–300 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Rasmussen, T., Jensen, L. & Johnsen, H. E. The clonal hierachy in multiple myeloma. Acta Oncol. 39, 765–770 (2000).

    CAS  Google Scholar 

  41. 41

    Ghosh, N. & Matsui, W. Cancer stem cells in multiple myeloma. Cancer Lett. 277, 1–7 (2009).

    CAS  Google Scholar 

  42. 42

    Matsui, W. et al. Characterization of clonogenic multiple myeloma cells. Blood 103, 2332–2336 (2004).

    CAS  Google Scholar 

  43. 43

    Pilarski, L. M. et al. Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Exp. Hematol. 30, 221–228 (2002).

    CAS  Google Scholar 

  44. 44

    Yaccoby, S. & Epstein, J. The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood 94, 3576–3582 (1999).

    CAS  Google Scholar 

  45. 45

    Hideshima, T., Nakamura, N., Chauhan, D. & Anderson, K. C. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20, 5991–6000 (2001).

    CAS  Google Scholar 

  46. 46

    Shain, K. H. et al. β1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res. 69, 1009–1015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Chauhan, D. et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87, 1104–1112 (1996).

    CAS  Google Scholar 

  48. 48

    Sprynski, A. C. et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 113, 4614–4626 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Kveiborg, M., Flyvbjerg, A., Eriksen, E. F. & Kassem, M. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors. J. Endocrinol. 169, 549–561 (2001).

    CAS  Google Scholar 

  50. 50

    Edwards, C. M., Zhuang, J. & Mundy, G. R. The pathogenesis of the bone disease of multiple myeloma. Bone 42, 1007–1013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Seidl, S., Kaufmann, H. & Drach, J. New insights into the pathophysiology of multiple myeloma. Lancet Oncol. 4, 557–564 (2003).

    CAS  Google Scholar 

  52. 52

    Terpos, E. & Dimopoulos, M. A. Myeloma bone disease: pathophysiology and management. Ann. Oncol. 16, 1223–1231 (2005).

    CAS  Google Scholar 

  53. 53

    Pinzone, J. J. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Spisek, R. et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J. Exp. Med. 204, 831–840 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Dhodapkar, K. M. et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17–1 cells) enriched in the bone marrow of patients with myeloma. Blood 112, 2878–2885 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Noonan, K. et al. A novel role of IL-17 producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 116, 3554–3563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Prabhala, R. H. et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115, 5385–5392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Kyle, R. A. & Rajkumar, S. V. Multiple myeloma. Blood 111, 2962–2972 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Gorgun, G. et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116, 3227–3237 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Rajkumar, S. V., Richardson, P. G., Hideshima, T. & Anderson, K. C. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol. 23, 630–639 (2005).

    CAS  Google Scholar 

  61. 61

    Thiele, J., Kvasnicka, H. M. & Schmitt-Graeff, A. Acute panmyelosis with myelofibrosis. Leuk. Lymphoma 45, 681–687 (2004).

    Google Scholar 

  62. 62

    Orazi, A. et al. Acute panmyelosis with myelofibrosis: an entity distinct from acute megakaryoblastic leukemia. Mod. Pathol. 18, 603–614 (2005).

    Google Scholar 

  63. 63

    Ryningen, A., Wergeland, L., Glenjen, N., Gjertsen, B. T. & Bruserud, O. In vitro crosstalk between fibroblasts and native human acute myelogenous leukemia (AML) blasts via local cytokine networks results in increased proliferation and decreased apoptosis of AML cells as well as increased levels of proangiogenic interleukin 8. Leuk. Res. 29, 185–196 (2005).

    CAS  Google Scholar 

  64. 64

    Veiga, J. P., Costa, L. F., Sallan, S. E., Nadler, L. M. & Cardoso, A. A. Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival. Exp. Hematol. 34, 610–621 (2006).

    CAS  Google Scholar 

  65. 65

    Matsunaga, T. et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat. Med. 9, 1158–1165 (2003).

    CAS  Google Scholar 

  66. 66

    Li, W. W., Hutnik, M. & Gehr, G. Antiangiogenesis in haematological malignancies. Br. J. Haematol. 143, 622–631 (2008).

    Google Scholar 

  67. 67

    Burger, J. A. & Peled, A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43–52 (2009).

    CAS  Google Scholar 

  68. 68

    Thiele, J. et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 90, 1128–1132 (2005).

    Google Scholar 

  69. 69

    Buesche, G. et al. Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia 22, 313–322 (2008).

    CAS  Google Scholar 

  70. 70

    Malcovati, L. et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J. Clin. Oncol. 25, 3503–3510 (2007).

    Google Scholar 

  71. 71

    Greenberg, P. et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89, 2079–2088 (1997).

    CAS  Google Scholar 

  72. 72

    Buesche, G. et al. Marrow fibrosis and its relevance during imatinib treatment of chronic myeloid leukemia. Leukemia 21, 2420–2427 (2007).

    CAS  Google Scholar 

  73. 73

    Tefferi, A., Skoda, R. & Vardiman, J.W. Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat. Rev. Clin. Oncol. 6, 627–637 (2009).

    CAS  Google Scholar 

  74. 74

    Thiele, J., Kvasnicka, H. M. & Orazi, A. Bone marrow histopathology in myeloproliferative disorders—current diagnostic approach. Semin. Hematol. 42, 184–195 (2005).

    Google Scholar 

  75. 75

    Thiele, J. & Kvasnicka, H. M. Chronic myeloproliferative disorders with thrombocythemia: a comparative study of two classification systems (PVSG, WHO) on 839 patients. Ann. Hematol. 82, 148–152 (2003).

    CAS  Google Scholar 

  76. 76

    Bock, O. et al. Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br. J. Haematol. 130, 76–82 (2005).

    CAS  Google Scholar 

  77. 77

    Bock, O. et al. Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am. J. Pathol. 172, 951–960 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Steurer, M. et al. Increased angiogenesis in chronic idiopathic myelofibrosis: vascular endothelial growth factor as a prominent angiogenic factor. Hum. Pathol. 38, 1057–1064 (2007).

    CAS  Google Scholar 

  79. 79

    Chiu, A. et al. The stromal composition of mast cell aggregates in systemic mastocytosis. Mod. Pathol. 22, 857–865 (2009).

    CAS  Google Scholar 

  80. 80

    Tripodo, C. et al. CD146+ bone marrow osteoprogenitors increase in the advanced stages of primary myelofibrosis. Haematologica 94, 127–130 (2009).

    Google Scholar 

  81. 81

    Migliaccio, A. R. et al. Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1 low mouse model of the disease. Exp. Hematol. 36, 158–171 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Cho, S. Y. et al. The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms. Cancer Res. 70, 3402–3410 (2010).

    CAS  Google Scholar 

  83. 83

    Thiele, J. et al. Dynamics of bone marrow changes in patients with chronic idiopathic myelofibrosis following allogeneic stem cell transplantation. Histol. Histopathol. 20, 879–889 (2005).

    CAS  Google Scholar 

  84. 84

    Kluin-Nelemans, H. C. et al. Lenalidomide therapy in systemic mastocytosis. Leuk. Res. 33, e19–e22 (2009).

    Google Scholar 

  85. 85

    Lim, K. H., Pardanani, A., Butterfield, J. H., Li, C. Y. & Tefferi, A. Cytoreductive therapy in 108 adults with systemic mastocytosis: outcome analysis and response prediction during treatment with interferon-alpha, hydroxyurea, imatinib mesylate or 2-chlorodeoxyadenosine. Am. J. Hematol. 84, 790–794 (2009).

    CAS  Google Scholar 

  86. 86

    Hussong, J. W., Rodgers, G. M. & Shami, P. J. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 95, 309–313 (2000).

    CAS  PubMed  Google Scholar 

  87. 87

    Padro, T. et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 95, 2637–2644 (2000).

    CAS  PubMed  Google Scholar 

  88. 88

    Lundberg, L. G. et al. Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am. J. Pathol. 157, 15–19 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Ponzoni, M. et al. Chronic idiopathic myelofibrosis: independent prognostic importance of bone marrow microvascular density evaluated by CD105 (endoglin) immunostaining. Mod. Pathol. 17, 1513–1520 (2004).

    Google Scholar 

  90. 90

    Kvasnicka, H. M. & Thiele, J. Bone marrow angiogenesis: methods of quantification and changes evolving in chronic myeloproliferative disorders. Histol. Histopathol. 19, 1245–1260 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Pruneri, G. et al. Angiogenesis in myelodysplastic syndromes. Br. J. Cancer 81, 1398–1401 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Kvasnicka, H. M. et al. Reversal of bone marrow angiogenesis in chronic myeloid leukemia following imatinib mesylate (STI571) therapy. Blood 103, 3549–3551 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Rambaldi, A., Barbui, T. & Barosi, G. From palliation to epigenetic therapy in myelofibrosis. Hematology Am. Soc. Hematol. Educ. Program 2008, 83–91 (2008).

    Google Scholar 

  94. 94

    Giles, F. J. et al. PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor of vascular endothelial growth factor (VEGF), has modest activity in myelofibrosis with myeloid metaplasia. Leuk. Res. 31, 891–897 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Mesa, R. A. et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase-2 trial E4903. Blood 116, 4436–4438 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Giles, F. J. et al. Phase II study of SU5416—a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor—in patients with refractory myeloproliferative diseases. Cancer 97, 1920–1928 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Rajkumar, S. V., Mesa, R. A. & Tefferi, A. A review of angiogenesis and anti-angiogenic therapy in hematologic malignancies. J. Hematother. Stem Cell Res. 11, 33–47 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Cathcart, K. et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103, 1037–1042 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Pinilla-Ibarz, J. et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95, 1781–1787 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Yong, A. S. et al. High PR3 or ELA2 expression by CD34+ cells in advanced-phase chronic myeloid leukemia is associated with improved outcome following allogeneic stem cell transplantation and may improve PR1 peptide-driven graft-versus-leukemia effects. Blood 110, 770–775 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Wu, F. et al. Th1-biased humoral immune responses against Wilms tumor gene WT1 product in the patients with hematopoietic malignancies. Leukemia 19, 268–274 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Nauta, A. J. & Fibbe, W. E. Immunomodulatory properties of mesenchymal stromal cells. Blood 110, 3499–3506 (2007).

    CAS  Google Scholar 

  104. 104

    Di Nicola, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).

    CAS  PubMed  Google Scholar 

  105. 105

    Deng, W. et al. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 24, 458–463 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Meisel, R. et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103, 4619–4621 (2004).

    CAS  PubMed  Google Scholar 

  107. 107

    Lepelletier, Y. et al. Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells Dev. 19, 1075–1079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Gieseke, F. et al. Human multipotent mesenchymal stromal cells employ galectin-1 to inhibit immune effector cells. Blood 116, 3770–3779 (2010).

    CAS  PubMed  Google Scholar 

  109. 109

    Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R. & Fibbe, W. E. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol. 177, 2080–2087 (2006).

    CAS  PubMed  Google Scholar 

  110. 110

    Cheng, P., Zhou, J. & Gabrilovich, D. Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol. Rev. 234, 105–119 (2010).

    CAS  Google Scholar 

  111. 111

    Prevosto, C., Zancolli, M., Canevali, P., Zocchi, M. R. & Poggi, A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92, 881–888 (2007).

    CAS  Google Scholar 

  112. 112

    Colombo, M. P. & Piconese, S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat. Rev. Cancer 7, 880–887 (2007).

    CAS  Google Scholar 

  113. 113

    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  Google Scholar 

  114. 114

    Prabhala, R. H. et al. Dysfunctional T regulatory cells in multiple myeloma. Blood 107, 301–304 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Szczepanski, M. J. et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin. Cancer Res. 15, 3325–3332 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Curti, A. et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 109, 2871–2877 (2007).

    CAS  Google Scholar 

  117. 117

    Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    CAS  Google Scholar 

  118. 118

    Kudo, Y. et al. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J. Reprod. Immunol. 61, 87–98 (2004).

    CAS  Google Scholar 

  119. 119

    Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Kong, Q. F. et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-β. J. Neuroimmunol. 207, 83–91 (2009).

    CAS  Google Scholar 

  122. 122

    Djouad, F. et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837–3844 (2003).

    CAS  Google Scholar 

  123. 123

    Le Blanc, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439–1441 (2004).

    Google Scholar 

  124. 124

    Zou, L. et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 64, 8451–8455 (2004).

    CAS  Google Scholar 

  125. 125

    Miura, Y. et al. Mesenchymal stem cell-organized bone marrow elements: an alternative hematopoietic progenitor resource. Stem Cells 24, 2428–2436 (2006).

    CAS  Google Scholar 

  126. 126

    Gotoh, N. Control of stemness by fibroblast growth factor signaling in stem cells and cancer stem cells. Curr. Stem Cell Res. Ther. 4, 9–15 (2009).

    CAS  Google Scholar 

  127. 127

    Karlsson, S. Is TGF-β a stemness regulator? Blood 113, 1208 (2009).

    CAS  Google Scholar 

  128. 128

    Fibbe, W. E. & Willemze, R. The role of interleukin-1 in hematopoiesis. Acta Haematol. 86, 148–154 (1991).

    CAS  Google Scholar 

  129. 129

    Kopf, M. et al. Pleiotropic defects of IL-6-deficient mice including early hematopoiesis, T and B cell function, and acute phase responses. Ann. NY Acad. Sci. 762, 308–318 (1995).

    CAS  Google Scholar 

  130. 130

    Pearl-Yafe, M. et al. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment. Stem Cells 28, 1270–1280 (2010).

    CAS  Google Scholar 

  131. 131

    Haylock, D. N. & Nilsson, S. K. Osteopontin: a bridge between bone and blood. Br. J. Haematol. 134, 467–474 (2006).

    CAS  Google Scholar 

  132. 132

    Emerson, S. G. Thrombopoietin, HSCs, and the osteoblast niche: holding on loosely, but not letting G0. Cell Stem Cell 1, 599–600 (2007).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

C. Tripodo, S. Sangaletti, P. P. Piccaluga, S. Prakash, G. Franco, and I. Borrello researched data to include in the article. C. Tripodo, S. Sangaletti, I. Borrello, A. Orazi, M. P. Colombo, and S. A. Pileri contributed to discussion to of content for the article. All the authors contributed to the writing of the manuscript. C. Tripodo, S. Sangaletti, A. Orazi, M. P. Colombo, and S. A. Pileri reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Claudio Tripodo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tripodo, C., Sangaletti, S., Piccaluga, P. et al. The bone marrow stroma in hematological neoplasms—a guilty bystander. Nat Rev Clin Oncol 8, 456–466 (2011). https://doi.org/10.1038/nrclinonc.2011.31

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing