Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted therapy in GIST: in silico modeling for prediction of resistance

Abstract

Elucidation of the genetic processes leading to neoplastic transformation has identified cancer-promoting molecular alterations that can be selectively targeted by rationally designed therapeutic agents. Protein kinases are druggable targets and have been studied intensively. New methodologies—including crystallography and three-dimensional modeling—have allowed the rational design of potent and selective kinase inhibitors that have already reached the clinical stage. However, despite the clinical success of kinase-targeted therapies, most patients that respond eventually relapse as a result of acquired resistance. Darwinian-type selection of secondary mutations seems to have a major role in this resistance. The emergence and/or expansion of tumor clones containing new mutations in the target kinase and that are drug-insensitive have been observed after chronic treatment. The resistance mechanisms to tyrosine kinase inhibitors, in particular secondary resistant mutations as a consequence of treatment, will be discussed in detail. In particular, this Review will focus on KIT and PDGFRA mutations, which are involved in the pathogenesis of gastrointestinal stromal tumors. Harnessing the selection of mutated variants developed to overcome these resistance mechanisms is an ongoing goal of current research and new strategies to overcome drug resistance is being envisaged.

Key Points

  • The pathogenetic role of constitutively activated receptor tyrosine kinases (RTKs) and drugs that specifically target this alteration in cancer has provided a new therapeutic opportunity

  • Despite encouraging early therapeutic results, the development of resistance can occur after a variable period of chronic treatment

  • The emergence of secondary mutations that affect the tyrosine kinase domain of RTKs reduce the drug binding affinity to the enzymatic pocket of the receptor; this resistance can be overcome by the development of drugs that bind efficiently the new mutated RTK forms

  • A new in silico approach is consistent with both biochemical and molecular data and patient clinical outcome and could support clinical decisions to increase the drug dose or administer a different drug

  • In silico molecular modeling can be used to predict the occurrence of all activating but drug-resistant secondary mutations and to develop a multi-drug targeted prevention strategy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KIT core conformations.
Figure 2: KIT and PDGFRA mutations and correllation to protein structure.
Figure 3: Imaging, biochemical and molecular evidence and modeling of KIT.
Figure 4: Clinical prediction of treatment outcomes with molecular modeling.

Similar content being viewed by others

References

  1. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Baselga, J. Targeting tyrosine kinases in cancer: the second wave. Science 312, 1175–1178 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pierotti, M. A. et al. Targeted therapies: the rare cancer paradigm. Mol. Oncol. 4, 19–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Healy, E. F., Johnson, S., Hauser, C. R. & King, P. J. Tyrosine kinase inhibition: ligand binding and conformational change in c-Kit and c-Abl. FASEB J. 583, 2899–2906 (2009).

    Article  CAS  Google Scholar 

  5. Liao, J. J. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem. 50, 409–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bikker, J. A., Brooijmans, N., Wissner, A. & Mansour, T. S. Kinase domain mutations in cancer: implications for small molecule drug design strategies. J. Med. Chem. 52, 1493–1509 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Ahn, Y. M. et al. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region. Bioorg. Med. Chem. Lett. 20, 5793–5798 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Swann, S. L. et al. Biochemical and biophysical characterization of unique switch pocket inhibitors of p38alpha. Bioorg. Med. Chem Lett. 20, 5787–5792 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lasota, J. & Miettinen, M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 53, 245–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Lasota, J. et al. Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod. Pathol. 21, 476–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Corless, C. L., Fletcher, J. A. & Heinrich, M. C. Biology of gastrointestinal stromal tumors. J. Clin. Oncol. 22, 3813–3825 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Conca, E. et al. Activate and resist: L576P-KIT in GIST. Mol. Cancer Ther. 8, 2491–2495 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Miettinen, M., Sobin, L. H. & Lasota, J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1,765 cases with long-term follow-up. Am. J. Surg. Pathol. 29, 52–68 (2005).

    Article  PubMed  Google Scholar 

  14. Keun, P. C. et al. Prognostic stratification of high-risk gastrointestinal stromal tumors in the era of targeted therapy. Ann. Surg. 247, 1011–1018 (2008).

    Article  Google Scholar 

  15. Blanke, C. D. et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol. 26, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Astolfi, A. et al. A molecular portrait of gastrointestinal stromal tumors: an integrative analysis of gene expression profiling and high-resolution genomic copy number. Lab. Invest. 90, 1285–1294 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Toffoli, G. et al. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J. Clin. Oncol. 28, 866–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Bauer, S., Duensing, A., Demetri, G. D. & Fletcher, J. A. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 26, 7560–7568 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Agaram, N. P. et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chrom. Cancer 47, 853–859 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Maertens, O. et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum. Mol. Genet. 15, 1015–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Mahadevan, D. et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 26, 3909–3919 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Miselli, F. C. et al. c-Kit/PDGFRA gene status alterations possibly related to primary imatinib resistance in gastrointestinal stromal tumors. Clin. Cancer Res. 13, 2369–2377 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Debiec–Rychter, M. et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128, 270–279 (2005).

    Article  PubMed  Google Scholar 

  25. Liegl, B. et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J. Pathol. 216, 64–74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liegl, B., Hornick, J. L., Antonescu, C. R., Corless, C. L. & Fletcher, C. D. Rhabdomyosarcomatous differentiation in gastrointestinal stromal tumors after tyrosine kinase inhibitor therapy: a novel form of tumor progression. Am. J. Surg. Pathol. 33, 218–226 (2009).

    Article  PubMed  Google Scholar 

  27. Tamborini, E. et al. Functional analyses and molecular modeling in two c-kit mutations responsable for imatinib secondary resistence in GIST patients. Oncogene 25, 6140–6146 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Foster, R., Griffith, R., Ferrao, P. & Ashman, L. Molecular basis of the constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor tyrosine kinase. J. Mol. Graph. Model. 23, 139–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Dileo, P. et al. Imatinib response in two GIST patients carrying two hitherto functionally uncharacterized PDGFRA mutations: an imaging, biochemical and molecular modeling study. Int. J. Cancer 128, 983–990 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Negri, T. et al. T670X KIT mutations in gastrointestinal stromal tumors: making sense of missense. J. Natl Cancer Inst. 101, 194–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Dixit, A. et al. Sequence and structure signatures of cancer mutation hotspots in protein kinases. PLoS ONE 4, 7485 (2009).

    Article  Google Scholar 

  32. Nishida, T. et al. Sunitinib-resistant gastrointestinal stromal tumors harbor cis-mutations in the activation loop of the KIT gene. Int. J. Clin. Oncol. 14, 143–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Gajiwala, K. S. et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc. Natl Acad. Sci. USA 106, 1542–1547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heinrich, M. C. et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol. 26, 5352–5359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montemurro, M. et al. Nilotinib in the treatment of advanced gastrointestinal stromal tumours resistant to both imatinib and sunitinib. Eur. J. Cancer 45, 2293–2297 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Casali, P. G. et al. Preliminary data of nilotinib in the first-line treatment of patients with metastatic or unresectable gastrointestinal stromal tumors (GIST) [abstract]. J. Clin. Oncol. 28 (Suppl. 15), TPS332 (2010).

    Article  Google Scholar 

  37. Reichardt, P. et al. Phase III trial of nilotinib in patients with advanced gastrointestinal stromal tumor (GIST): first results from ENEST G3 [abstract]. J. Clin. Oncol. 28 (Suppl. 15), 10017 (2010).

    Article  Google Scholar 

  38. Lee, S. J. & Wang, J. Y. Exploiting the promiscuity of imatinib. J. Biol. 8, 30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schittenhelm, M. M. et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 66, 473–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Dewaele, B. et al. Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin. Cancer Res. 14, 5749–5758 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Roberts, K. G. et al. Resistance to c-KIT kinase inhibitors conferred by V654A mutation. Mol Cancer Ther. 6, 1159–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Ou, W. B., Zhu, M. J., Demetri, G. D., Fletcher, C. D. & Fletcher, J. A. Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene. 27, 5624–5634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gotlib, J. et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 106, 2865–2870 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heinrich, M. C. et al. In vitro activity of novel KIT/PDGFRA switch pocket kinase inhibitors against mutations associated with drug-resistant GI stromal tumors [abstract]. J. Clin. Oncol. 28 (Suppl. 15), 10007 (2010).

    Article  Google Scholar 

  45. Bauer, S., Yu, L. K., Demetri, G. D. & Fletcher, J. A. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 66, 9153–9161 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Muhlenberg, T. et al. Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res. 69, 6941–6950 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bauer, S. et al. Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells. Cancer Res. 70, 150–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Schoffski, P. et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann. Oncol. 21, 1990–1998 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Hohenberger, P. et al., Multicenter, single-arm, two-stage phase II trial of everolimus (RAD001) with imatinib-resistant patients (pts) with advanced GIST [abstract]. J. Clin. Oncol. 28 (Suppl. 15), 10048 (2010).

    Article  Google Scholar 

  50. Richter, S. et al., Multicenter, triple arm, single-stage, phase II trial to determine the efficacy and safety of everolimus (RAD001) in patients with refractory bone or soft tissue sarcomas including GIST [abstract]. J. Clin. Oncol. 28 (Suppl. 15), 10038 (2010).

    Article  Google Scholar 

  51. Wardelmann, E. et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin. Cancer Res. 12, 1743–1749 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Grabellus, F. et al. Double resistance to imatinib and AMG 706 caused by multiple acquired KIT exon 17 mutations in a gastrointestinal stromal tumour. Gut. 56, 1025–1026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nishida, T. et al. Secondary mutations in the kinase domain of the KIT gene are predominant in imatinib-resistant gastrointestinal stromal tumor. Cancer Sci. 99, 799–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Sawyers, C. L. Even better kinase inhibitors for chronic myeloid leukemia. N. Engl. J. Med. 362, 2314–2315 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Heinrich, M. C. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299, 708–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hirota, S. et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125, 660–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. DeMatteo, R. P. et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann. Surg. 231, 51–58 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pasini, B. et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet. 16, 79–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Janeway, K. A. et al. Succinate dehydrogenase in KIT/PDGFRA wild-type gastrointestinal stromal tumors [abstract]. J. Clin. Oncol. 28 (Suppl. 15), 10008 (2010).

    Article  Google Scholar 

  61. Lim, K. H. et al. Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med. Oncol. 25, 207–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Antonescu, C. R. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 11, 4182–4190 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Heinrich, M. C. et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24, 4764–4774 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Desai, J. et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin. Cancer Res. 13, 5398–5405 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all the INT clinical staff who made this multidisciplinary investigation of GIST possible, in particular Dr. Paolo G. Casali and Dr. Alessandro Gronchi. A special thanks goes to Dr. Elena Fumagalli who answered to all our clinical questions. The authors are partially funded by the Associazione Italiana per la Ricerca sul Cancro (AIRC).

Author information

Authors and Affiliations

Authors

Contributions

M. A. Pierotti, E. Tamborini, T. Negri, S. Pricl and S. Pilotti contributed equally to the literature review, discussions of the content, writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Sabrina Pricl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierotti, M., Tamborini, E., Negri, T. et al. Targeted therapy in GIST: in silico modeling for prediction of resistance. Nat Rev Clin Oncol 8, 161–170 (2011). https://doi.org/10.1038/nrclinonc.2011.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer