Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Personalized cancer medicine—advances and socio-economic challenges

Abstract

It was Hippocrates, the father of Western medicine, who first emphasized the patient as the most important determinant of therapeutic efficacy. Although the principle of adjusting treatment to specific patient characteristics has since been the strategy of physicians, this is undermined by a population-biased approach to drug development. Therefore, it is generally true to say that our current evidential approach to cancer treatment is driven more by drug-regulation requirements and market considerations than the specific needs of an individual patient. But, with cancer drug costs now spiraling out of control and the modest efficacy typically seen in patients, the community is again turning to Hippocrates' ancient paradigm—this time with emphasis on molecular considerations. Rapidly evolving technologies are empowering us to describe the molecular 'nature' of a patient and/or tumor and with this has come the beginning of truly personalized medicine, with maximized efficacy, cost effectiveness and hopefully improved survival for the patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The monthly costs of oncology drugs at the time of FDA approval (1965–2008).
Figure 2: Overview of the 3R principle.

Similar content being viewed by others

References

  1. La Rosée, P. & Deininger, M. W. Resistance to imatinib: mutations and beyond. Semin. Hematol. 47, 335–343 (2010).

    Article  Google Scholar 

  2. Gerber, D. E. & Minna, J. D. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell 14, 548–551 (2010).

    Article  Google Scholar 

  3. Smalley, K. S. PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma. Curr. Opin. Investig. Drugs 11, 699–706 (2010).

    CAS  PubMed  Google Scholar 

  4. Jackson, D. B. Molecular perspectives on the non-responder phenomenon. Drug Discov. Today 14, 373–379 (2009).

    Article  CAS  Google Scholar 

  5. Hayes, D. F. Bevacizumab treatment for solid tumors: boon or bust? JAMA 305, 506–508 (2011).

    Article  CAS  Google Scholar 

  6. Fojo, T. & Parkinson, D. R. Biologically targeted cancer therapy and marginal benefits: are we making too much of too little or are we achieving too little by giving too much? Clin. Cancer Res. 16, 5972–5980 (2010).

    Article  CAS  Google Scholar 

  7. Fojo, T. & Grady, C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J. Natl Cancer Inst. 101, 1044–1048 (2009).

    Article  Google Scholar 

  8. Jackson, D. B. Clinical and economic impact of the nonresponder phenomenon—implications for systems based discovery. Drug Discov. Today 14, 380–385 (2009).

    Article  Google Scholar 

  9. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    Article  CAS  Google Scholar 

  10. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 44, 1031–1037 (2001).

    Article  Google Scholar 

  11. Mok, T. S. Personalized medicine in lung cancer: what we need to know. Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2011.126.

    Article  CAS  Google Scholar 

  12. Ribas, A. & Flaherty, K. T. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol. 8, 426–433 (2011).

    Article  CAS  Google Scholar 

  13. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors [abstract]. J. Clin. Oncol. 28 (Suppl.), a3534 (2010).

    Article  Google Scholar 

  14. Xia, G. et al. EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene 25, 769–780 (2006).

    Article  CAS  Google Scholar 

  15. Davalos, V. et al. EPHB4 and survival of colorectal cancer patients. Cancer Res. 66, 8943–8948 (2006).

    Article  CAS  Google Scholar 

  16. Medco®. Drug Trend Report [online], (2010).

  17. Chabner, B. A. & Roberts, T. G. Jr. Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005).

    Article  CAS  Google Scholar 

  18. Cohen, H. Drug Topics Red Book 112th edn (Thomson Healthcare, New Jersey, 2008).

    Google Scholar 

  19. Kim, P. Cost of cancer care: The patient perspective. J. Clin. Oncol. 25, 228–232 (2007).

    Article  Google Scholar 

  20. Himmelstein, D. U., Thorne, D., Warren, E. & Woolhandler, S. Medical bankruptcy in the United States, 2007: results of a national study. Am. J. Med. 122, 741–746 (2009).

    Article  Google Scholar 

  21. Antoni, M. H. et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat. Rev. Cancer 6, 240–248 (2006).

    Article  CAS  Google Scholar 

  22. Meropol, N. J. et al. American Society of Clinical Oncology guidance statement: the cost of cancer care. J. Clin. Oncol. 27, 3868–3874 (2009).

    Article  Google Scholar 

  23. US Census Bureau. USA QuickFacts from the US Census Bureau [online], (2011).

  24. Bergsland, E. & Dickler, M. N. Maximizing the potential of bevacizumab in cancer treatment. Oncologist 9 (Suppl. 1), 36–42 (2004).

    Article  CAS  Google Scholar 

  25. Kelly, W. K. et al. A randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, prednisone, and placebo with docetaxel, prednisone, and bevacizumab in men with metastatic castration-resistant prostate cancer (mCRPC): Survival results of CALGB 90401 [abstract]. J. Clin. Oncol. 28 (Suppl.), LBA4511 (2010).

    Article  Google Scholar 

  26. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010).

    Article  CAS  Google Scholar 

  27. Van Cutsem, E. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 27, 2231–2237 (2009).

    Article  CAS  Google Scholar 

  28. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  Google Scholar 

  29. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    Article  CAS  Google Scholar 

  30. Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740 (2009).

    Article  CAS  Google Scholar 

  31. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  Google Scholar 

  32. Reck, M. et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J. Clin. Oncol. 27, 1227–1234 (2009).

    Article  CAS  Google Scholar 

  33. Reck, M. et al. Overall survival with cisplatin gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: Results from a randomised phase III trial (AVAiL). Ann. Oncol. 21, 1804–1809 (2010).

    Article  CAS  Google Scholar 

  34. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    Article  CAS  Google Scholar 

  35. Rini, B. I. et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J. Clin. Oncol. 26, 5422–5428 (2008).

    Article  CAS  Google Scholar 

  36. Roche. European medical advisory committee does not recommend approval of Avastin for deadly form of brain cancer [online], (2009).

  37. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  Google Scholar 

  38. Burstein, H. J. Avastin, ODAC, and the FDA: are we drafting the right players? J. Natl Compr. Canc. Netw. 8, 833–834 (2010).

    Article  Google Scholar 

  39. Miles, D. W. et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 28, 3239–3247 (2010).

    Article  CAS  Google Scholar 

  40. Robert, N. J. et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC) [abstract 1005]. J. Clin. Oncol. 27 (Suppl. 15), 42S (2009).

    Google Scholar 

  41. Couzin-Frankel, J. & Ogale, Y. FDA. Once on 'fast track,' avastin now derailed. Science 333, 143–144 (2011).

    Article  CAS  Google Scholar 

  42. Cohn, D. E., Kim, K. H., Resnick, K. E., O'Malley, D. M. & Straughn, J. M. Jr. At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? A cost-effectiveness analysis. J. Clin. Oncol. 29, 1247–1251 (2011).

    Article  Google Scholar 

  43. Burger, R. A. et al. Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): A Gynecologic Oncology Group study [abstract]. J. Clin. Oncol. 28 (Suppl. 18), LBA1 (2010).

    Article  Google Scholar 

  44. Hensley, M. L. Big costs for little gain in ovarian cancer. J. Clin. Oncol. 29, 1230–1232 (2011).

    Article  Google Scholar 

  45. Munro, A. J. & Niblock, P. G. Cancer research in the global village. 376, 659–660 (2010).

  46. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–897 (2010).

    Article  CAS  Google Scholar 

  47. Meropol, N. J. & Schulman, K. A. Cost of cancer care: issues and implications. J. Clin. Oncol. 25, 180–186 (2007).

    Article  Google Scholar 

  48. Doloresco, F. et al. Projecting future drug expenditures: 2011. Am. J. Health Syst. Pharm. 68, 921–932 (2011).

    Article  Google Scholar 

  49. Ranpura, V., Hapani, S. & Wu, S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305, 487–494 (2011).

    Article  CAS  Google Scholar 

  50. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  Google Scholar 

  51. Allegra, C. J. et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J. Clin. Oncol. 27, 2091–2096 (2009).

    Article  Google Scholar 

  52. Perlroth, D. J., Goldman, D. P. & Garber, A. M. The potential impact of comparative effectiveness research on U.S. health care expenditures. Demography 47 (Suppl.), S173–S190 (2010).

    Article  Google Scholar 

  53. Chung, K. Y. et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. 23, 1803–1810 (2005).

    Article  CAS  Google Scholar 

  54. Murukesh, N., Dive, C. & Jayson, G. C. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br. J. Cancer 102, 8–18 (2010).

    Article  CAS  Google Scholar 

  55. US Department of Health and Human Services. Table of Pharmacogenomic Biomarkers in Drug Labels [online], (2011).

  56. Weinstein, I. B. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  Google Scholar 

  57. Davey, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510 (2011).

    Article  CAS  Google Scholar 

  58. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  Google Scholar 

  59. Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

    Article  CAS  Google Scholar 

  60. US Department of Health and Human Sciences. Centers for Medicare & Medicaid Services [online], (2009).

  61. Picker, A. & Jackson, D. B. Genetic determinants of anticancer drug activity: towards a global approach to personalized cancer medicine. Expert Rev. Mol. Diagn. 11, 567–577 (2011).

    Article  Google Scholar 

  62. Adams, F. The Genuine Works of Hippocrates (Baillière, Tindall, & Cox, London, 1939).

    Google Scholar 

  63. Kang, Y. et al. AVAGAST: A randomized, double-blind, placebo-controlled, phase III study of first-line capecitabine and cisplatin plus bevacizumab or placebo in patients with advanced gastric cancer (AGC) [abstract]. J. Clin. Oncol. 28 (Suppl. 18), LBA4007 (2010).

    Article  Google Scholar 

  64. US Department of Health and Human Services. AHRQ Agency for Healthcare Research and Quality [online], (2011).

Download references

Acknowledgements

Portions of work presented here were supported by grants from the NIH (CA109298, CA110793, CA083639, CA098258 and U54 CA151668), Department of Defense (OC073399, OC093146 and BC085265), a Program Project Development Grant from the Ovarian Cancer Research Fund, the Marcus Foundation, the Gynecologic Cancer Foundation, the Blanton–Davis Ovarian Cancer Research Program, the RGK Foundation, the Laura and John Arnold Foundation, and the Betty Ann Asche Murray Distinguished Professorship.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data, writing, editing and reviewing this article.

Corresponding author

Correspondence to Anil K. Sood.

Ethics declarations

Competing interests

D. B. Jackson is an employee of LIFE Biosystems. A. K. Sood declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, D., Sood, A. Personalized cancer medicine—advances and socio-economic challenges. Nat Rev Clin Oncol 8, 735–741 (2011). https://doi.org/10.1038/nrclinonc.2011.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing