Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Challenges translating breast cancer gene signatures into the clinic

Abstract

The advent of microarray-based gene-expression profiling a decade ago raised high expectations for rapid advances in breast cancer classification, prognostication and prediction. Despite the development of molecular classifications, and prognostic and predictive gene-expression signatures, microarray-based studies have not yielded definitive answers to many of the questions that remain germane for the successful implementation of personalized medicine. There are a lack of robust signatures to predict benefit from specific therapeutic agents and it is still not possible to predict prognosis or chemotherapy treatment response in specific disease subsets accurately, such as triple-negative breast cancer. We discuss the hurdles in the development and validation of molecular classification systems, and prognostic and predictive signatures based on microarray gene-expression profiling. We suggest that similar challenges are likely to be encountered in translating next-generation sequencing data into clinically useful information. Finally we highlight strategies for the development of clinically useful molecular predictors in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Challenges for the development of microarray-based gene signatures to predict drug response.
Figure 2: Generation of predictive markers.

Similar content being viewed by others

References

  1. [No authors listed] Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  2. Weigel, M. T. & Dowsett, M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr. Relat. Cancer 17, R245–R262 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Weigelt, B., Baehner, F. L. & Reis-Filho, J. S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol. 220, 263–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Reis-Filho, J. S., Weigelt, B., Fumagalli, D. & Sotiriou, C. Molecular profiling: moving away from tumor philately. Sci. Transl. Med. 2, 47ps43 (2010).

    Article  PubMed  Google Scholar 

  6. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  7. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sørlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hu, Z. et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iwamoto, T. & Pusztai, L. Predicting prognosis of breast cancer with gene signatures: are we lost in a sea of data? Genome Med. 2, 81 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  13. Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA 98, 13790–13795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garber, M. E. et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hayes, D. N. et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J. Clin. Oncol. 24, 5079–5090 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Janku, F., Stewart, D. J. & Kurzrock, R. Targeted therapy in non-small-cell lung cancer–is it becoming a reality? Nat. Rev. Clin. Oncol. 7, 401–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Davies, M. A. & Samuels, Y. Analysis of the genome to personalize therapy for melanoma. Oncogene 29, 5545–5555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  PubMed  Google Scholar 

  22. Oakman, C., Santarpia, L. & Di Leo, A. Breast cancer assessment tools and optimizing adjuvant therapy. Nat. Rev. Clin. Oncol. 7, 725–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Cuzick, J. et al. Prognostic value of a combined, ER, PgR, Ki67, HER2 immunohistochemical (IHC4) score and comparison with the GHI Recurrence Score—Results from TransATAC [abstract]. Cancer Res. 69 (Suppl. 3), a74 (2009).

    Article  Google Scholar 

  24. Viale, G. et al. Central Review of, ER, PgR and HER2 in BIG 1–98 Evaluating letrozole vs. letrozole followed by tamoxifen vs. tamoxifen followed by letrozole as adjuvant endocrine therapy for postmenopausal women with hormone receptor-positive breast cancer [abstract]. Cancer Res. 69 (Suppl. 3), a76 (2009).

    Article  Google Scholar 

  25. Borst, P. & Wessels, L. Do predictive signatures really predict response to cancer chemotherapy? Cell Cycle 9, 4836–4840 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Baggerly, K. A. & Coombes, K. R. Deriving chemosensitivity from cell lines: Forensic bioinformatics and reproducible research in high-throughput biology. Ann. Appl. Stat. 3, 1309–1334 (2009).

    Article  Google Scholar 

  27. Liedtke, C. et al. Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Res. Treat. 121, 301–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Popovici, V. et al. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res. 12, R5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Coombes, K. R., Wang, J. & Baggerly, K. A. Microarrays: retracing steps. Nat. Med. 13, 1276–1277 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61, 5979–5984 (2001).

    CAS  PubMed  Google Scholar 

  31. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weigelt, B. et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 11, 339–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Haibe-Kains, B. et al. Robustness of breast cancer molecular subtypes identification [abstract a980]. Ann. Oncol. 21 (Suppl. 4), iv49–iv59 (2010).

    Google Scholar 

  35. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Ronde, J. J. et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res. Treat. 119, 119–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Cleator, S. J. et al. The effect of the stromal component of breast tumours on prediction of clinical outcome using gene expression microarray analysis. Breast Cancer Res. 8, R32 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pusztai, L., Mazouni, C., Anderson, K., Wu, Y. & Symmans, W. F. Molecular classification of breast cancer: limitations and potential. Oncologist 11, 868–877 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Simon, R., Radmacher, M. D., Dobbin, K. & McShane, L. M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst. 95, 14–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Mackay, A. et al. Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J. Natl Cancer Inst. 103, 662–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mook, S. et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol. 10, 1070–1076 (2009).

    Article  PubMed  Google Scholar 

  43. Weigelt, B. & Reis-Filho, J. S. Molecular profiling currently offers no more than tumour morphology and basic immunohistochemistry. Breast Cancer Res. 12 (Suppl. 4), S5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rody, A. et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 11, R15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Teschendorff, A. E. & Caldas, C. A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res. 10, R73 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rhodes, A., Jasani, B., Balaton, A. J. & Miller, K. D. Immunohistochemical demonstration of oestrogen and progesterone receptors: correlation of standards achieved on in house tumours with that achieved on external quality assessment material in over 150 laboratories from 26 countries. J. Clin. Pathol. 53, 292–301 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Badve, S. S. et al. Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J. Clin. Oncol. 26, 2473–2481 (2008).

    Article  PubMed  Google Scholar 

  48. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, L. et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 28, 827–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Bueno-de-Mesquita, J. M. et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol. 8, 1079–1087 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Bonnefoi, H., Underhill, C., Iggo, R. & Cameron, D. Predictive signatures for chemotherapy sensitivity in breast cancer: are they ready for use in the clinic? Eur. J. Cancer 45, 1733–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hess, K. R. et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J. Clin. Oncol. 24, 4236–4244 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Tabchy, A. et al. Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin. Cancer Res. 16, 5351–5361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Esteva, F. J., Yu, D., Hung, M. C. & Hortobagyi, G. N. Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat. Rev. Clin. Oncol. 7, 98–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Aparicio, S. A. & Huntsman, D. G. Does massively parallel DNA resequencing signify the end of histopathology as we know it? J. Pathol. 220, 307–315 (2010).

    CAS  PubMed  Google Scholar 

  58. Stephens, P. J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahmed, A. A. & Brenton, J. D. Microarrays and breast cancer clinical studies: forgetting what we have not yet learnt. Breast Cancer Res. 7, 96–99 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Evans, J. P., Meslin, E. M., Marteau, T. M. & Caulfield, T. Genomics. Deflating the genomic bubble. Science 331, 861–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Dowsett, M. et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J. Natl Cancer Inst. 99, 167–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Graeser, M. et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16, 6159–6168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ashworth, A. & Bernards, R. Using functional genetics to understand breast cancer biology. Cold Spring Harb. Perspect. Biol. 2, a003327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Villarroel, M. C. et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol. Cancer Ther. 10, 3–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haber, D. A., Gray, N. S. & Baselga, J. The evolving war on cancer. Cell 145, 19–24 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B. Weigelt is funded by a Cancer Research UK postdoctoral fellowship. L. Pusztai is funded in part by the Breast Cancer Research Foundation. A. Ashworth and J. S. Reis-Filho are funded in part by Breakthrough Breast Cancer, Cancer Research UK and Stand-Up to Cancer/American Association for Cancer Research. We thank William Foulkes for his insightful comments. J. S. Reis-Filho is a recipient of the 2010 CRUK Future Leaders Prize. We acknowledge NHS funding to the NIHR Biomedical Research Centre. The study sponsors had no involvement in the design of this Perspective, the literature review, data interpretation, writing of the manuscript or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Contributions

B. Weigelt and J. S. Reis-Filho contributed to the data research, discussion, writing, reviewing and editing of the manuscript. L. Pusztai and A. Ashworth contributed to the discussion, reviewing and editing the manuscript.

Corresponding author

Correspondence to Jorge S. Reis-Filho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigelt, B., Pusztai, L., Ashworth, A. et al. Challenges translating breast cancer gene signatures into the clinic. Nat Rev Clin Oncol 9, 58–64 (2012). https://doi.org/10.1038/nrclinonc.2011.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.125

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer