Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapy with azanucleosides for myelodysplastic syndromes

Abstract

Azanucleosides constitute the core therapy in the management of myelodysplastic syndromes (MDS), and have altered the treatment paradigm of MDS, previously dominated by supportive care strategies. DNA methylation regulates gene transcription in MDS, and it is hypothesized that azanucleoside therapy induces DNA hypomethylation and re-expression of aberrantly silenced genes in patients with these disorders. A series of clinical trials conducted over the past 5 years has demonstrated the activity of these therapies. Two agents, 5-azacitidine and decitabine, have been approved by the FDA for treatment of MDS. Recently, 5-azacitidine therapy has been shown, for the first time, to prolong survival in patients with MDS. Because the targeting of biologic pathways in MDS is best accomplished by combining agents with complementary mechanisms of action, combinations of azanucleosides with other drugs are being investigated. In this article, we critically appraise the most relevant clinical data reported on the use of azanucleosides for the treatment of patients with MDS.

Key Points

  • Azanucleosides have significantly changed the outcome for patients with myelodysplastic syndrome (MDS), leading to an improvement in cytopenias and a reduction in the risk of transformation to acute myeloid leukemia

  • It is hypothesized that azanucleosides act through induction of DNA hypomethylation, leading to re-expression of tumor suppressor genes that are silenced in cancer cells. However, there is still a lack of clinical data confirming this hypothesis

  • One randomized trial demonstrated that 5-azacitidine improves survival in patients with MDS compared with conventional care regimens

  • Decitabine leads to rapid responses and improvements in cytopenias in approximately 50% of patients with MDS, but no improvement in survival has been reported in clinical trials to date. A 5-day schedule of therapy may lead to better response rates than the original 3-day schedule

  • Clinical studies combining azanucleosides with histone deacetylase inhibitors and other compounds (such as monoclonal antibodies) have been initiated

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cytidine nucleosides and azanucleosides.
Figure 2: Proposed mechanism of action of azanucleosides.
Figure 3: Intracellular activation pathways of azanucleosides.

References

  1. 1

    Cazzola, M. & Malcovati, L. Myelodysplastic syndromes-—coping with ineffective hematopoiesis. N. Engl. J. Med. 352, 536–538 (2005).

    CAS  PubMed  Google Scholar 

  2. 2

    Haase, D. et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2,124 patients. Blood 110, 4385–4395 (2007).

    CAS  PubMed  Google Scholar 

  3. 3

    Bianchi, E. & Rogge, L. Dissecting oncogenes and tyrosine kinases in AML cells. MedGenMed 5, 10 (2003).

    PubMed  Google Scholar 

  4. 4

    Silverman, L. R. et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 7 (Suppl. 1), 21–29 (1993).

    PubMed  Google Scholar 

  5. 5

    Zagonel, V. et al. 5-Aza-2'-deoxycytidine (decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia 7 (Suppl. 1), 30–35 (1993).

    PubMed  Google Scholar 

  6. 6

    Daskalakis, M. et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2'-deoxycytidine (decitabine) treatment. Blood 100, 2957–2964 (2002).

    CAS  PubMed  Google Scholar 

  7. 7

    Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    CAS  PubMed  Google Scholar 

  8. 8

    Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    CAS  PubMed  Google Scholar 

  9. 9

    Nan, X. et al. Transcriptional repression by the methyl CpG binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  Google Scholar 

  10. 10

    Melki, J. R., Vincent, P. C. & Clark, S. J. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 59, 3730–3740 (1999).

    CAS  PubMed  Google Scholar 

  11. 11

    Issa, J. P., Baylin, S. B. & Herman, J. G. DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11 (Suppl. 1), S7–S11 (1997).

    PubMed  Google Scholar 

  12. 12

    Aggerholm, A., Holm, M. S., Guldberg, P., Olesen, L. H. & Hokland, P. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur. J. Haematol. 76, 23–32 (2006).

    CAS  PubMed  Google Scholar 

  13. 13

    Quesnel, B. et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 91, 2985–2990 (1998).

    CAS  PubMed  Google Scholar 

  14. 14

    Liu, T. X. et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat. Med. 13, 78–83 (2007).

    PubMed  Google Scholar 

  15. 15

    Shen, L. et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J. Clin. Oncol. 28, 605–613 (2010).

    CAS  PubMed  Google Scholar 

  16. 16

    Figueroa, M. E. et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114, 3448–3458 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Jiang, Y. et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113, 1315–1325 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Piskala, A. & Sorm, F. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Coll. Czeck. Chem. Commun. 29, 2060–2076 (1964).

    CAS  Google Scholar 

  19. 19

    Pliml, J. & Sorm, F. Synthesis of 2'-deoxy-D-ribofuranosyl-5-azacytosine. Coll. Czeck. Chem. Commun. 29, 2576–2577 (1964).

    CAS  Google Scholar 

  20. 20

    Saiki, J. H. et al. Effect of schedule on activity and toxicity of 5-azacytidine in acute leukemia: a Southwest Oncology Group Study. Cancer 47, 1739–1742 (1981).

    CAS  PubMed  Google Scholar 

  21. 21

    Rivard, G. E. et al. Phase I study on 5-aza-2'-deoxycytidine in children with acute leukemia. Leuk. Res. 5, 453–462 (1981).

    CAS  PubMed  Google Scholar 

  22. 22

    Momparler, R. L., Rivard, G. E. & Gyger, M. Clinical trial on 5-aza-2'-deoxycytidine in patients with acute leukemia. Pharmacol. Ther. 30, 277–286 (1985).

    CAS  PubMed  Google Scholar 

  23. 23

    Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93 (1980).

    CAS  PubMed  Google Scholar 

  24. 24

    Christman, J. K., Mendelsohn, N., Herzog, D. & Schneiderman, N. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells (HL-60). Cancer Res. 43, 763–769 (1983).

    CAS  PubMed  Google Scholar 

  25. 25

    Pinto, A. et al. 5-Aza-2'-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood 64, 922–929 (1984).

    CAS  PubMed  Google Scholar 

  26. 26

    Stresemann, C. & Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8–13 (2008).

    CAS  PubMed  Google Scholar 

  27. 27

    von Hoff, D. D. & Slavik, M. 5-Azacytidine—a new anticancer drug with significant activity in acute myeloblastic leukemia. Adv. Pharmacol. Chemother. 14, 285–326 (1977).

    CAS  PubMed  Google Scholar 

  28. 28

    Yang, A. S. et al. DNA methylation changes after 5-aza-2'-deoxycytidine therapy in patients with leukemia. Cancer Res. 66, 5495–5503 (2006).

    CAS  PubMed  Google Scholar 

  29. 29

    Koshy, M. et al. 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96, 2379–2384 (2000).

    CAS  PubMed  Google Scholar 

  30. 30

    Wilson, V. L., Jones, P. A. & Momparler, R. L. Inhibition of DNA methylation in L1210 leukemic cells by 5-aza-2'-deoxycytidine as a possible mechanism of chemotherapeutic action. Cancer Res. 43, 3493–3496 (1983).

    CAS  PubMed  Google Scholar 

  31. 31

    Momparler, R. L., Bouchard, J., Onetto, N. & Rivard, G. E. 5-Aza-2'-deoxycytidine therapy in patients with acute leukemia inhibits DNA methylation. Leuk. Res. 8, 181–185 (1984).

    CAS  PubMed  Google Scholar 

  32. 32

    Karpf, A. R. A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics 1, 116–120 (2006).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Blum, W. et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J. Clin. Oncol. 25, 3884–3891 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Fandy, T. E. et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114, 2764–2773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Garcia-Manero, G. et al. Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood 108, 3271–3279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Gore, S. D. et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 66, 6361–6369 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    Kantarjian, H. et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109, 52–57 (2007).

    CAS  PubMed  Google Scholar 

  38. 38

    Soriano, A. O. et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110, 2302–2308 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Flotho, C. et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23, 1019–1028 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Byun, H. M. et al. Genome-wide DNA methylation analysis of patients with myelodysplastic syndrome after azacitidine treatment [abstract]. Blood 114, a600 (2009).

    Google Scholar 

  41. 41

    Palii, S. S. et al. DNA methylation inhibitor 5-aza-2'-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol. Cell Biol. 28, 752–771 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Wang, H. et al. An ATM- and Rad3-related (ATR) signaling pathway and a phosphorylation-acetylation cascade are involved in activation of p53/p21Waf1/Cip1 in response to 5-aza-2'-deoxycytidine treatment. J. Biol. Chem. 283, 2564–2574 (2008).

    CAS  PubMed  Google Scholar 

  43. 43

    Jüttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797–11801 (1994).

    PubMed  Google Scholar 

  44. 44

    Fabre, C. et al. A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFκB inhibition in malignant myeloblasts. Cell Cycle 7, 2139–2145 (2008).

    CAS  PubMed  Google Scholar 

  45. 45

    Reichman, M. & Penman, S. The mechanism of inhibition of protein synthesis by 5-azacytidine in HeLa cells. Biochem. Biophys. Acta 324, 282–289 (1973).

    CAS  PubMed  Google Scholar 

  46. 46

    Lee, T., Karon, M. & Momparler, R. L. Kinetic studies on phosphorylation of 5-azacytidine with the purified uridine-cytidine kinase from calf thymus. Cancer Res. 34, 2482–2488 (1974).

    CAS  PubMed  Google Scholar 

  47. 47

    Veselý, J., Cihák, A. & Sorm, F. Characteristics of mouse leukemic cells resistant to 5-azacytidine and 5-aza-2'-deoxycytidine. Cancer Res. 28, 1995–2000 (1968).

    PubMed  Google Scholar 

  48. 48

    Veselý, J., Cihák, A. & Sorm, F. Biochemical mechanisms of drug resistance. IV. Development of resistance to 5-azacytidine and simultaneous depression of pyrimidine metabolism in leukemic mice. Int. J. Cancer 2, 639–642 (1967).

    PubMed  Google Scholar 

  49. 49

    Li, L. H., Olin, E. J., Buskirk, H. H. & Reineke, L. M. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 30, 2760–2769 (1970).

    CAS  Google Scholar 

  50. 50

    Creusot, F., Acs, G. & Christman, J. K. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine. J. Biol. Chem. 257, 2041–2048 (1982).

    CAS  PubMed  Google Scholar 

  51. 51

    Silverman, L. R. et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J. Clin. Oncol. 24, 3895–3903 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Silverman, L. R. et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the Cancer and Leukemia Group B. J. Clin. Oncol. 20, 2429–2440 (2002).

    CAS  PubMed  Google Scholar 

  53. 53

    Kornblith, A. B. et al. Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a Cancer and Leukemia Group B study. J. Clin. Oncol. 20, 2441–2452 (2002).

    CAS  PubMed  Google Scholar 

  54. 54

    Kaminskas, E. et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin. Cancer Res. 11, 3604–3608 (2005).

    CAS  PubMed  Google Scholar 

  55. 55

    Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Greenberg, P. et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89, 2079–2088 (1997).

    CAS  Google Scholar 

  57. 57

    List, A. F. et al. Effect of azacitidine (AZA) on overall survival in higher-risk myelodysplastic syndromes (MDS) without complete remission [abstract]. J. Clin. Oncol. 26 (Suppl.), a7006 (2008).

    Google Scholar 

  58. 58

    Fenaux, P. et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 28, 562–569 (2010).

    CAS  PubMed  Google Scholar 

  59. 59

    Thépot, S. et al. Azacytidine (AZA) as first line therapy in AML: results of the French ATU program [abstract]. Blood 114, a843 (2009).

    Google Scholar 

  60. 60

    Grövdal, M. et al. Maintenance treatment with 5-azacitidine for patients with high risk myelodysplastic syndrome (MDS) or acute myeloid leukemia following MDS (MDS-AML) in complete remission (CR) after induction chemotherapy [abstract]. Blood 112, a223 (2008).

    Google Scholar 

  61. 61

    Gardin, C. et al. A phase II study of post-remission therapy with azacitidine (AZA) in patients with AML post-MDS and high-risk MDS: a GFM group study [abstract]. Blood 114, a844 (2009).

    Google Scholar 

  62. 62

    Jabbour, E. et al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer 115, 1899–1905 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    De Lima, M. et al. Maintenance therapy with low-dose azacitidine (AZA) after allogeneic hematopoietic stem cell transplantation (HSCT) for relapsed or refractory AML or MDS: a dose and schedule finding study [abstract]. Blood 112, a1134 (2008).

    Google Scholar 

  64. 64

    US National Library of Medicine. ClinicalTrials.gov [online]. (2010).

  65. 65

    Lyons, R. M. et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J. Clin. Oncol. 27, 1850–1856 (2009).

    CAS  PubMed  Google Scholar 

  66. 66

    Sekeres, M. A. et al. A study comparing dosing regimens and efficacy of subcutaneous to intravenous azacitidine (AZA) for the treatment of myelodysplastic syndromes (MDS) [abstract]. Blood 114, a3797 (2009).

    Google Scholar 

  67. 67

    Garcia-Manero, G. et al. A phase 1, open-label, dose-escalation study to evaluate the safety, pharmacokinetics, and pharmacodynamics of oral azacitidine in patients with myelodysplastic syndromes (MDS) or acute myelogenous leukemia (AML) [abstract]. Blood 114, a117 (2009).

    Google Scholar 

  68. 68

    Momparler, R. L. et al. Kinetic interaction of 5-aza-2'-deoxycytidine-5'-monophosphate and its 5'-triphosphate with deoxycytidylate deaminase. Mol. Pharmacol. 25, 436–440 (1984).

    CAS  PubMed  Google Scholar 

  69. 69

    Santini, V., Kantarjian, H. M. & Issa, J. P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med. 134, 573–586 (2001).

    CAS  PubMed  Google Scholar 

  70. 70

    Wijermans, P. W., Krulder, J. W., Huijgens, P. C. & Neve, P. Continuous infusion of low-dose 5-aza-2'-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 11 (Suppl. 1), S19–S23 (1997).

    PubMed  Google Scholar 

  71. 71

    Wijermans, P. et al. Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J. Clin. Oncol. 18, 956–962 (2000).

    CAS  PubMed  Google Scholar 

  72. 72

    Lübbert, M. et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine. Br. J. Haematol. 114, 349–357 (2001).

    PubMed  Google Scholar 

  73. 73

    Kantarjian, H. et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106, 1794–1803 (2006).

    CAS  PubMed  Google Scholar 

  74. 74

    Issa, J. P. et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103, 1635–1640 (2004).

    CAS  PubMed  Google Scholar 

  75. 75

    Steensma, D. P. et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J. Clin. Oncol. 27, 3842–3848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Wijermans, P. et al. Low dose decitabine versus best supportive care in elderly patients with intermediate or high risk MDS not eligible for intensive chemotherapy: final results of the randomized phase III study (06011) of the EORTC leukemia and German MDS study groups [abstract]. Blood 112, a226 (2008).

    Google Scholar 

  77. 77

    Cashen, A. F., Schiller, G. J., O'Donnell, M. R. & DiPersio, J. F. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J. Clin. Oncol. 28, 556–561 (2010).

    CAS  PubMed  Google Scholar 

  78. 78

    Silverman, L. R. et al. The effects of continued azacitidine (AZA) treatment cycles on response in higher-risk patients (pts) with myelodysplastic syndromes (MDS) [abstract]. Blood 112, a227 (2008).

    Google Scholar 

  79. 79

    Germing, U. et al. Refinement of the international prognostic scoring system (IPSS) by including LDH as an additional prognostic variable to improve risk assessment in patients with primary myelodysplastic syndromes. Leukemia 19, 2223–2231 (2005).

    CAS  PubMed  Google Scholar 

  80. 80

    Raj, K. et al. CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 21, 1937–1944 (2007).

    CAS  PubMed  Google Scholar 

  81. 81

    Rüter, B., Wijermans, P., Claus, R., Kunzmann, R. & Lübbert, M. Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood 110, 1080–1082 (2007).

    PubMed  Google Scholar 

  82. 82

    Ravandi, F. et al. Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities. Cancer 115, 5746–5751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Qin, T., Jelinek, J., Si, J., Shu, J. & Issa, J. P. Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood 113, 659–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Hollenbach, P. W. et al. A comparison of azacitidine and decitabine activities in AML cell lines. PLoS ONE 5, e9001 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Borthakur, G. et al. Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. Leuk. Lymphoma 49, 690–695 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Cameron, E. E., Bachman, K. E., Myöhänen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107 (1999).

    CAS  PubMed  Google Scholar 

  87. 87

    Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).

    CAS  PubMed  Google Scholar 

  88. 88

    Raffoux, E. et al. Epigenetic therapy with 5-azacitidine, valproic acid, and ATRA in patients with high-risk AML or MDS: results of the French VIVEDEP phase II study. Blood 112, 763 (2008).

    Google Scholar 

  89. 89

    Voso, M. T. et al. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin. Cancer Res. 15, 5002–5007 (2009).

    CAS  PubMed  Google Scholar 

  90. 90

    Kuendgen, A. et al. Treatment of poor risk myelodysplastic syndromes and acute myeloid leukemia with a combination of 5-azacytidine and valproic acid [abstract]. Blood 112, a3639 (2008).

    Google Scholar 

  91. 91

    Gore, S. D. et al. Combined methyltransferase/histone deacetylase inhibition with 5-azacitidine and MS-275 in patients with, MDS, CMMoL and AML: clinical response, histone acetylation and DNA damage [abstract]. Blood 108, a517 (2006).

    Google Scholar 

  92. 92

    US National Library of Medicine. ClinicalTrials.gov [online]. (2010).

  93. 93

    Garcia-Manero, G. et al. Phase I/II study of MGCD0103, an oral isotype-selective histone deacetylase (HDAC) inhibitor, in combination with 5-azacitidine in higher-risk myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) [abstract]. Blood 110, a444 (2007).

    Google Scholar 

  94. 94

    Silverman, L. R. et al. A phase I trial of the epigenetic modulators vorinostat, in combination with azacitidine (azaC) in patients with the myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): a study of the New York Cancer Consortium [abstract]. Blood 112, a3656 (2008).

    Google Scholar 

  95. 95

    US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  96. 96

    US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  97. 97

    Yang, H., Hoshino, K., Sanchez-Gonzalez, B., Kantarjian, H. & Garcia-Manero, G. Antileukemia activity of the combination of 5-aza-2'-deoxycytidine with valproic acid. Leuk. Res. 29, 739–748 (2005).

    CAS  PubMed  Google Scholar 

  98. 98

    Issa, J. P. et al. Randomized phase II study of combined epigenetic therapy: decitabine vs. decitabine and valproic acid in MDS and AML [abstract]. Blood 112, a228 (2008).

    Google Scholar 

  99. 99

    Ravandi, F. et al. Phase I study of suberoylanilide hydroxamic acid (SAHA) and decitabine in patients with relapsed, refractory or poor prognosis leukemia [abstract]. Blood 110, a897 (2007).

    Google Scholar 

  100. 100

    Kirschbaum, M. et al. Phase I study of vorinostat in combination with decitabine in patients with relapsed or newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome [abstract]. Blood 112, a3651 (2008).

    Google Scholar 

  101. 101

    Balaian, L. & Ball, E. D. Cytotoxic activity of gemtuzumab ozogamicin (mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia 20, 2093–2101 (2006).

    CAS  PubMed  Google Scholar 

  102. 102

    Nand, S. et al. Hydroxyurea, azacitidine and gemtuzumab ozogamicin therapy in patients with previously untreated non-M3 acute myeloid leukemia and high-risk myelodysplastic syndromes in the elderly: results from a pilot trial. Leuk. Lymphoma 49, 2141–2147 (2008).

    CAS  PubMed  Google Scholar 

  103. 103

    Borthakur, G. et al. Decitabine and gemtuzumab ozogamicin in acute myelogenous leukemia and high-risk myelodysplastic syndrome [abstract]. Blood 112, a2985 (2008).

    Google Scholar 

  104. 104

    Raza, A. et al. Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer 113, 1596–1604 (2008).

    CAS  PubMed  Google Scholar 

  105. 105

    Sekeres, M. A. et al. Phase I combination trial of lenalidomide and azacitidine in patients with higher-risk myelodysplastic syndromes. J. Clin. Oncol. 28, 2253–2258 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Jabbour, E. et al. Outcome of patients (pts) with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) post decitabine failure [abstract]. Blood 112, a1659 (2008).

    Google Scholar 

Download references

Acknowledgements

A. Quintás-Cardama and F. P. S. Santos contributed equally to this manuscript. D. Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfonso Quintás-Cardama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quintás-Cardama, A., Santos, F. & Garcia-Manero, G. Therapy with azanucleosides for myelodysplastic syndromes. Nat Rev Clin Oncol 7, 433–444 (2010). https://doi.org/10.1038/nrclinonc.2010.87

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing