Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predictive, personalized, preventive, participatory (P4) cancer medicine


Medicine will move from a reactive to a proactive discipline over the next decade—a discipline that is predictive, personalized, preventive and participatory (P4). P4 medicine will be fueled by systems approaches to disease, emerging technologies and analytical tools. There will be two major challenges to achieving P4 medicine—technical and societal barriers—and the societal barriers will prove the most challenging. How do we bring patients, physicians and members of the health-care community into alignment with the enormous opportunities of P4 medicine? In part, this will be done by the creation of new types of strategic partnerships—between patients, large clinical centers, consortia of clinical centers and patient-advocate groups. For some clinical trials it will necessary to recruit very large numbers of patients—and one powerful approach to this challenge is the crowd-sourced recruitment of patients by bringing large clinical centers together with patient-advocate groups.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Weston, A. D. & Hood, L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3, 179–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Hood, L. A. in Physical Biology: From Atoms to Medicine (ed. Zewail, A. H.) 337–366 (Imperial College Press, London, 2008).

    Book  Google Scholar 

  3. Price, N. D. et al. in Essentials of Genomic and Personalized Medicine (eds Ginsburg, G. S. & Willard, H. F.) 131–141 (Elsevier Academic Press, Maryland Heights, 2009).

    Google Scholar 

  4. Auffray, C., Charron, D. & Hood, L. Predictive, preventive, personalized and participatory medicine: back to the future. Genome Med. 2, 57 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao, L. Genomics: The tale of our other genome. Nature 465, 879–880 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang, D. et al. A systems approach to prion disease. Mol. Syst. Biol. 5, 252 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hood, L. & Galas, D. The digital code of DNA. Nature 421, 444–448 (2003).

    Article  PubMed  Google Scholar 

  9. Carey, L. A. Through a glass darkly: advances in understanding breast cancer biology, 2000–2010. Clin. Breast Cancer 10, 188–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ivshina, A. V. et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 66, 10292–10301 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cleator, S. & Ashworth, A. Molecular profiling of breast cancer: clinical implications. Br. J. Cancer 90, 1120–1124 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Monti, S. et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105, 1851–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. [No authors listed] Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  16. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Dalton, W. S. & Friend, S. H. Cancer biomarkers—an invitation to the table. Science 312, 1165–1168 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Marx, V. Merck–Moffitt personalized medicine partnership builds out information and data integration pipeline. GenomeWeb [online], (2009).

  19. Multiple Myeloma Research Foundation. Multiple Myeloma Research Consortium (MMRC) activates clinical trials 30–40 percent faster than industry standard. MMRFSM [online], (2009).

  20. Adenoid Cystic Carcinoma Research Foundation [online], (2010).

  21. Love, S. M., Mills, D., Eraklis, E. & Hulbert, M. The Love/Avon Army of Women: a “just in time” resource to encourage research in women [abstract]. J. Clin. Oncol. 27 (15 Suppl.), a1535 (2009).

    Google Scholar 

  22. Love/Avon Army of women [online], (2010).

  23. Bouchie, A. Coming soon: a global grid for cancer research. Nat. Biotechnol. 22, 1071–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Love/Avon. Health of women study [online], (2010).

  25. Mendelsohn, J., Tursz, T., Schilsky, R. L. & Lazar, V. Focus on personalized medicine: WIN Consortium—challenges and advances. Nat. Rev. Clin. Oncol. 8, 133–134 (2011).

    Article  PubMed  Google Scholar 

  26. Sonnenburg, S. et al. The need for open source software in machine learning. J. Mach. Learn. Res. 8, 2443–2466 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations



Both authors contributed to researching the data for the article, discussion of content, and writing and reviewing the manuscript.

Corresponding author

Correspondence to Leroy Hood.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hood, L., Friend, S. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8, 184–187 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer