Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging therapeutic targets in endometrial cancer

Abstract

Endometrial cancer comprises a heterogeneous group of tumors, with distinct risk factors, clinical presentation, histopathological features and molecular characteristics. Currently, treatment of metastatic or recurrent disease is based on conventional chemotherapy combination regimens. Advances in the understanding of the molecular pathology of the two types of endometrial carcinoma—type I (endometrioid) and type II (non-endometrioid)—have underpinned the first steps in the development and testing of targeted therapies. Of the potential therapeutic targets identified to date, clinical trials have only assessed the efficacy of inhibition of the EGFR, VEGFR and PI3K/PTEN/AKT/mTOR signaling pathways; responses to these targeted therapies were modest. Despite the striking molecular differences between type I and type II endometrial cancers, most clinical trials have not taken this diversity into account. The identification of activating mutations of kinases (for example PIK3CA and FGFR2) and loss of function of genes related to DNA repair (for example PTEN) may lead to more biology-driven clinical trials exploiting the concepts of oncogene addiction and synthetic lethality.

Key Points

  • Endometrial cancer is a heterogeneous disease with distinct molecular characteristics

  • The most frequent aberration is the activation of the PI3K/PTEN/AKT/mTOR pathway

  • Targeted therapies are yet to be introduced in clinical practice

  • EGFR, mTOR, HER2 and VEGFR inhibitors have been tested in phase II trials as single agents with modest results

  • The development of more potent inhibitors of the PI3K/PTEN/AKT/mTOR pathway and the identification of new druggable targets has led to the initiation of several biology-driven clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targetable pathways for the treatment of endometrial cancer.

Similar content being viewed by others

References

  1. Jemal, A. Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Plataniotis, G. et al. Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21 (Suppl. 5), v41–v45 (2010).

    Article  PubMed  Google Scholar 

  3. Surveillance Epidemiology and End Results. SEER Cancer Statistics Review 1975-2007 [online], (2010).

  4. Bokhman, J. V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 15, 10–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Hecht, J. L. & Mutter, G. L. Molecular and pathologic aspects of endometrial carcinogenesis. J. Clin. Oncol. 24, 4783–4791 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Risinger, J. I. et al. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 63, 6–11 (2003).

    CAS  PubMed  Google Scholar 

  7. Lax, S. F., Pizer, E. S., Ronnett, B. M. & Kurman, R. J. Comparison of estrogen and progesterone receptor, Ki-67, and p53 immunoreactivity in uterine endometrioid carcinoma and endometrioid carcinoma with squamous, mucinous, secretory, and ciliated cell differentiation. Hum. Pathol. 29, 924–931 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Fujimoto, T. et al. Endometrioid uterine cancer: histopathological risk factors of local and distant recurrence. Gynecol. Oncol. 112, 342–347 (2009).

    Article  PubMed  Google Scholar 

  9. Lax, S. F., Pizer, E. S., Ronnett, B. M. & Kurman, R. J. Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum. Pathol. 29, 551–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Hamilton, C. A. et al. Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Br. J. Cancer 94, 642–646 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amant, F. et al. Endometrial cancer. Lancet 366, 491–505 (2005).

    Article  PubMed  Google Scholar 

  12. Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl Acad. Sci. USA 105, 8713–8717 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Konecny, G. E. et al. HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer. Br. J. Cancer 100, 89–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Salvesen, H. B. et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc. Natl Acad. Sci. USA 106, 4834–4839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dellinger, T. H. & Monk, B. J. Systemic therapy for recurrent endometrial cancer: a review of North American trials. Expert Rev. Anticancer Ther. 9, 905–916 (2009).

    Article  PubMed  Google Scholar 

  16. Greer, B. E. et al. Uterine Neoplasms. Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 7, 498–531 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. McMeekin, D. S. et al. The relationship between histology and outcome in advanced and recurrent endometrial cancer patients participating in first-line chemotherapy trials: a Gynecologic Oncology Group study. Gynecol. Oncol. 106, 16–22 (2007).

    Article  PubMed  Google Scholar 

  18. Tavassoli, F. A. & Delilee, P. (Eds) Pathology and Genetics of Tumours of the Breast and Female Genital Organs (World Health Organization Classification of Tumours) (IARC Press, Lyon, France, 2003).

    Google Scholar 

  19. Creasman, W. T. et al. Carcinoma of the corpus uteri. FIGO 6th Annual Report on the Results of Treatment in Gynecological Cancer. Int. J. Gynaecol. Obstet. 95 (Suppl. 1), S105–S143 (2006).

    Article  PubMed  Google Scholar 

  20. Acharya, S., Hensley, M. L., Montag, A. C. & Fleming, G. F. Rare uterine cancers. Lancet Oncol. 6, 961–971 (2005).

    Article  PubMed  Google Scholar 

  21. Slomovitz, B. M. et al. Uterine papillary serous carcinoma (UPSC): a single institution review of 129 cases. Gynecol. Oncol. 91, 463–469 (2003).

    Article  PubMed  Google Scholar 

  22. Kobel, M. et al. The biological and clinical value of p53 expression in pelvic high-grade serous carcinomas. J. Pathol. 222, 191–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. McCluggage, W. G. Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int. J. Gynecol. Cancer 12, 687–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Maxwell, G. L. et al. Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin. Cancer Res. 11, 4056–4066 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Geyer, F. C. et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J. Pathol. 220, 562–573 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Tsuda, H., Yamamoto, K., Inoue, T., Uchiyama, I. & Umesaki, N. The role of p16-cyclin d/CDK-pRb pathway in the tumorigenesis of endometrioid-type endometrial carcinoma. Br. J. Cancer 82, 675–682 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koul, A., Willen, R., Bendahl, P. O., Nilbert, M. & Borg, A. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis. Cancer 94, 2369–2379 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Suehiro, Y. et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin. Cancer Res. 14, 3354–3361 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Holcomb, K. et al. E-cadherin expression in endometrioid, papillary serous, and clear cell carcinoma of the endometrium. Obstet. Gynecol. 100, 1290–1295 (2002).

    CAS  PubMed  Google Scholar 

  30. Moreno-Bueno, G. et al. Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J. Pathol. 199, 471–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Fadare, O. & Zheng, W. Insights into endometrial serous carcinogenesis and progression. Int. J. Clin. Exp. Pathol. 2, 411–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrison, C. et al. HER-2 is an independent prognostic factor in endometrial cancer: association with outcome in a large cohort of surgically staged patients. J. Clin. Oncol. 24, 2376–2385 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Oda, K., Stokoe, D., Taketani, Y. & McCormick, F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 65, 10669–10673 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Catasus, L., Gallardo, A., Cuatrecasas, M. & Prat, J. Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod. Pathol. 22, 522–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Hayes, M. P., Douglas, W. & Ellenson, L. H. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma. Gynecol. Oncol. 113, 370–373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyake, T. et al. PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. Cancer Lett. 261, 120–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Catasus, L., Gallardo, A., Cuatrecasas, M. & Prat, J. PIK3CA mutations in the kinase domain (exon 20) of uterine endometrial adenocarcinomas are associated with adverse prognostic parameters. Mod. Pathol. 21, 131–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Mutter, G. L. et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J. Natl Cancer Inst. 92, 924–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Risinger, J. I. et al. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin. Cancer Res. 4, 3005–3010 (1998).

    CAS  PubMed  Google Scholar 

  40. Shoji, K. et al. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br. J. Cancer 101, 145–148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalinsky, K. et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin. Cancer Res. 15, 5049–5059 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Byron, S. A. et al. Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res. 68, 6902–6907 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Lax, S. F., Kendall, B., Tashiro, H., Slebos, R. J. & Hedrick, L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer 88, 814–824 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Mackay, H. J. et al. Prognostic value of microsatellite instability (MSI) and PTEN expression in women with endometrial cancer: results from studies of the NCIC Clinical Trials Group (NCIC CTG). Eur. J. Cancer 46, 1365–1373 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Kanamori, Y. et al. PTEN expression is associated with prognosis for patients with advanced endometrial carcinoma undergoing postoperative chemotherapy. Int. J. Cancer 100, 686–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Pallares, J. et al. Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod. Pathol. 18, 719–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Pollock, P. M. et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26, 7158–7162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Khalifa, M. A., Mannel, R. S., Haraway, S. D., Walker, J. & Min, K. W. Expression of EGFR, HER-2/neu, P53, and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas. Gynecol. Oncol. 53, 84–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Livasy, C. A., Reading, F. C., Moore, D. T., Boggess, J. F. & Lininger, R. A. EGFR expression and HER2/neu overexpression/amplification in endometrial carcinosarcoma. Gynecol. Oncol. 100, 101–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Jia, L. et al. Endometrial glandular dysplasia with frequent p53 gene mutation: a genetic evidence supporting its precancer nature for endometrial serous carcinoma. Clin. Cancer Res. 14, 2263–2269 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Liggett, W. H. Jr & Sidransky, D. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol. 16, 1197–1206 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ignatov, A. et al. P16 alterations increase the metastatic potential of endometrial carcinoma. Gynecol. Oncol. 111, 365–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Salvesen, H. B., Das, S. & Akslen, L. A. Loss of nuclear p16 protein expression is not associated with promoter methylation but defines a subgroup of aggressive endometrial carcinomas with poor prognosis. Clin. Cancer Res. 6, 153–159 (2000).

    CAS  PubMed  Google Scholar 

  55. Wong, Y. F. et al. p16INK4 and p15INK4B alterations in primary gynecologic malignancy. Gynecol. Oncol. 65, 319–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Stefansson, I. M., Salvesen, H. B. & Akslen, L. A. Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J. Clin. Oncol. 22, 1242–1252 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Moreno-Bueno, G. et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene 21, 7981–7990 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Schlosshauer, P. W., Ellenson, L. H. & Soslow, R. A. Beta-catenin and E-cadherin expression patterns in high-grade endometrial carcinoma are associated with histological subtype. Mod. Pathol. 15, 1032–1037 (2002).

    Article  PubMed  Google Scholar 

  59. Schlosshauer, P. W., Pirog, E. C., Levine, R. L. & Ellenson, L. H. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma. Mod. Pathol. 13, 1066–1071 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Fukuchi, T. et al. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 58, 3526–3528 (1998).

    CAS  PubMed  Google Scholar 

  61. Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Miturski, R. et al. Mismatch repair genes and microsatellite instability as molecular markers for gynecological cancer detection. Exp. Biol. Med. (Maywood) 227, 579–586 (2002).

    Article  CAS  Google Scholar 

  63. MacDonald, N. D. et al. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 60, 1750–1752 (2000).

    CAS  PubMed  Google Scholar 

  64. Basil, J. B., Goodfellow, P. J., Rader, J. S., Mutch, D. G. & Herzog, T. J. Clinical significance of microsatellite instability in endometrial carcinoma. Cancer 8 9, 1758–1764 (2000).

    Article  Google Scholar 

  65. Bilbao, C. et al. The relationship between microsatellite instability and PTEN gene mutations in endometrial cancer. Int. J. Cancer 119, 563–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 2 3, 609–618 (2005).

    Article  Google Scholar 

  67. Bertagnolli, M. M. et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27, 1814–1821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hewish, M., Lord, C. J., Martin, S. A., Cunningham, D. & Ashworth, A. Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat. Rev. Clin. Oncol. 7, 197–208 (2010).

    Article  PubMed  Google Scholar 

  69. Goodfellow, P. J. Clinicopathologic significance of DNA mismatch repair defects in endometrial cancer: the devil is in the details. Gynecol. Oncol. 113, 151–152 (2009).

    Article  PubMed  Google Scholar 

  70. Black, D. et al. Clinicopathologic significance of defective DNA mismatch repair in endometrial carcinoma. J. Clin. Oncol. 24, 1745–1753 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Wik, E. et al. Deoxyribonucleic acid ploidy in endometrial carcinoma: a reproducible and valid prognostic marker in a routine diagnostic setting. Am. J. Obstet. Gynecol. 201, 603.e1–603.e7 (2009).

    Article  CAS  Google Scholar 

  72. Lukes, A. S. et al. Multivariable analysis of DNA ploidy, p53, and HER-2/neu as prognostic factors in endometrial cancer. Cancer 73, 2380–2385 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Lebeau, A. et al. Oestrogen receptor gene (ESR1) amplification is frequent in endometrial carcinoma and its precursor lesions. J. Pathol. 216, 151–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Tan, D. S., Lambros, M. B., Marchio, C. & Reis-Filho, J. S. ESR1 amplification in endometrial carcinomas: hope or hyperbole? J. Pathol. 21 6, 271–274 (2008).

    Article  CAS  Google Scholar 

  75. Reis-Filho, J. S. et al. ESR1 gene amplification in breast cancer: a common phenomenon? Nat. Genet. 40, 809–810 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Jongen, V. et al. Expression of estrogen receptor-alpha and -beta and progesterone receptor-A and -B in a large cohort of patients with endometrioid endometrial cancer. Gynecol. Oncol. 112, 537–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Kohler, M. F. et al. Mutational analysis of the estrogen-receptor gene in endometrial carcinoma. Obstet. Gynecol. 86, 33–37 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Arnett-Mansfield, R. L. et al. Relative expression of progesterone receptors A and B in endometrioid cancers of the endometrium. Cancer Res. 61, 4576–4582 (2001).

    CAS  PubMed  Google Scholar 

  79. Thomson, A. W. & Woo, J. Immunosuppressive properties of FK-506 and rapamycin. Lancet 2, 443–444 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Stallone, G. et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Dancey, J. mTOR signaling and drug development in cancer. Nat. Rev. Clin. Oncol. 7, 209–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5, 671–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Oza, A. M. et al. A phase II study of temsirolimus (CCI-779) in patients with metastatic and/or locally advanced recurrent endometrial cancer previously treated with chemotherapy: NCIC CTG IND 160b [abstract]. J. Clin. Oncol. 26 (Suppl.), a5516 (2008).

    Article  Google Scholar 

  84. Oza, A. M. et al. Phase I study of temsirolimus (CCI-779), carboplatin, and paclitaxel in patients (pts) with advanced solid tumors: NCIC CTG IND 179 [abstract]. J. Clin. Oncol. 27 (Suppl. 15), a3558 (2009).

    Article  Google Scholar 

  85. Temkin, S. M., Yamada, S. D. & Fleming, G. F. A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecol. Oncol. 117, 473–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Colombo, N. et al. A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer [abstract]. J. Clin. Oncol. 25 (18 Suppl.), a5516 (2007).

    Article  Google Scholar 

  87. Fetterly, G. J. et al. Pharmacokinetics of oral deforolimus (AP23573, MK-8669) [abstract]. J. Clin. Oncol. 26 (Suppl.), a14555 (2008).

    Article  Google Scholar 

  88. Slomovitz, B. M. et al. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer 116, 5415–5419 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8, 179–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Bader, A. G., Kang, S. & Vogt, P. K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl Acad. Sci. USA 103, 1475–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Noh, W. C. et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin. Cancer Res. 1 0, 1013–1023 (2004).

    Article  Google Scholar 

  92. Brachmann, S. M. et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc. Natl Acad. Sci. USA 106, 22299–22304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Raynaud, F. I. et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 67, 5840–5850 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Fan, Q. W. et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9, 341–349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raynaud, F. I. et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther. 8, 1725–1738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Niikura, H. et al. Prognostic value of epidermal growth factor receptor expression in endometrioid endometrial carcinoma. Hum. Pathol. 26, 892–896 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Scambia, G. et al. Significance of epidermal growth factor receptor expression in primary human endometrial cancer. Int. J. Cancer 56, 26–30 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Oza, A. M. et al. Phase II study of erlotinib in recurrent or metastatic endometrial cancer: NCIC IND-148. J. Clin. Oncol. 26, 4319–4325 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Slomovitz, B. et al. Phase II study of cetuximab (Erbitux) in patients with progressive or recurrent endometrial cancer [abstract]. Gynecol. Oncol. 116 (Suppl.1), S13 (2010).

    Google Scholar 

  100. Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958–967 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, C. Q. et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol. 26, 4268–4275 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Burtness, B. et al. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J. Clin. Oncol. 23, 8646–8654 (2005).

    Article  PubMed  Google Scholar 

  103. Bardelli, A. & Siena, S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J. Clin. Oncol. 28, 1254–1261 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Villella, J. A., Cohen, S., Smith, D. H., Hibshoosh, H. & Hershman, D. HER-2/neu overexpression in uterine papillary serous cancers and its possible therapeutic implications. Int. J. Gynecol. Cancer 16, 1897–1902 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Jewell, E., Secord, A. A., Brotherton, T. & Berchuck, A. Use of trastuzumab in the treatment of metastatic endometrial cancer. Int. J. Gynecol. Cancer 16, 1370–1373 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Fleming, G. F. et al. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol. 1 16, 15–20 (2010).

    Article  CAS  Google Scholar 

  107. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639–2648 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Konecny, G. E. et al. Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br. J. Cancer 98, 1076–1084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. El-Sahwi, K. et al. In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br. J. Cancer 102, 134–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Sivridis, E. et al. Angiogenic co-operation of VEGF and stromal cell TP in endometrial carcinomas. J. Pathol. 196, 416–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Salvesen, H. B., Iversen, O. E. & Akslen, L. A. Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J. Clin. Oncol. 17, 1382–1390 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Stefansson, I. M., Salvesen, H. B. & Akslen, L. A. Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res. 66, 3303–3309 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Kamat, A. A. et al. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin. Cancer Res. 13, 7487–7495 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. McMeekin, D. S. et al. A phase II trial of thalidomide in patients with refractory endometrial cancer and correlation with angiogenesis biomarkers: a Gynecologic Oncology Group study. Gynecol. Oncol. 105, 508–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aghajanian, C. et al. A phase II evaluation of bevacizumab in the treatment of recurrent or persistent endometrial cancer: A Gynecologic Oncology Group (GOG) Study [abstract]. J. Clin. Oncol. 27 (Suppl. 15), a5531 (2009).

    Article  Google Scholar 

  118. Nimeiri, H. S. et al. Sorafenib (SOR) in patients (pts) with advanced/recurrent uterine carcinoma (UCA) or carcinosarcoma (CS): A phase II trial of the University of Chicago, PMH, and California Phase II Consortia [abstract]. J. Clin. Oncol. 26 (Suppl.), a5585 (2008).

    Article  Google Scholar 

  119. Correa, R. et al. A phase II study of sunitinib in recurrent or metastatic endometrial carcinoma: a trial of the Princess Margaret Hospital, The University of Chicago, and California Cancer Phase II Consortia [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a5038 (2010).

    Article  Google Scholar 

  120. Pasquale, E. B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer 10, 165–180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, J. W. et al. EphA2 immunoconjugate as molecularly targeted chemotherapy for ovarian carcinoma. J. Natl Cancer Inst. 101, 1193–1205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Thaker, P. H. et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin. Cancer Res. 10, 5145–5150 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Kamat, A. A. et al. EphA2 overexpression is associated with lack of hormone receptor expression and poor outcome in endometrial cancer. Cancer 115, 2684–2692 (2009).

    Article  PubMed  CAS  Google Scholar 

  124. Lee, J. W. et al. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin. Cancer Res. 16, 2562–2570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Santin, A. D. et al. Gene expression fingerprint of uterine serous papillary carcinoma: identification of novel molecular markers for uterine serous cancer diagnosis and therapy. Br. J. Cancer 92, 1561–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. El-Sahwi, K. et al. Overexpression of EpCAM in uterine serous papillary carcinoma: implications for EpCAM-specific immunotherapy with human monoclonal antibody adecatumumab (MT201). Mol Cancer Ther. 9, 57–66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Hockel, M. et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515 (1996).

    CAS  PubMed  Google Scholar 

  129. Schindl, M. et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin. Cancer Res. 8, 1831–1837 (2002).

    CAS  PubMed  Google Scholar 

  130. Pansare, V. et al. Increased expression of hypoxia-inducible factor 1alpha in type I and type II endometrial carcinomas. Mod. Pathol. 20, 35–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Kato, H. et al. Induction of human endometrial cancer cell senescence through modulation of HIF-1alpha activity by EGLN1. Int. J. Cancer 118, 1144–1153 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Schwartz, D. L. et al. The selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects. Mol. Cancer Ther. 8, 947–958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shen, W. H. et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128, 157–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. McEllin, B. et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res. 70, 5457–5464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dedes, K. J. et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci. Transl. Med. 2, 53ra75 (2010).

    Article  PubMed  CAS  Google Scholar 

  137. Ang, J. E. et al. A feasibility study of sequential doublet chemotherapy comprising carboplatin-doxorubicin and carboplatin-paclitaxel for advanced endometrial adenocarcinoma and carcinosarcoma. Ann. Oncol. 20, 1787–1793 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Cirisano, F. D. Jr et al. Epidemiologic and surgicopathologic findings of papillary serous and clear cell endometrial cancers when compared to endometrioid carcinoma. Gynecol. Oncol. 74, 385–394 (1999).

    Article  PubMed  Google Scholar 

  139. Matthews, R. P. et al. Papillary serous and clear cell type lead to poor prognosis of endometrial carcinoma in black women. Gynecol. Oncol. 65, 206–212 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this Review are funded in part by Breakthrough Breast Cancer. K. J. Dedes is funded in part by a Fellowship of the Swiss National Science Foundation (SNF Grant 128,487). The authors acknowledge National Health Service funding to the National Institute for Health Research Biomedical Research Center.

Author information

Authors and Affiliations

Authors

Contributions

K. J. Dedes, D. Wetterskog and J. S. Reis-Filho researched data for the article. All authors contributed substantially to discussion of the content and to the writing of this Review. A. Ashworth, S. B. Kaye and J. S. Reis-Filho reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Konstantin J. Dedes.

Ethics declarations

Competing interests

A. Ashworth is a patent holder with AstraZeneca and S. B. Kaye is on the advisory board at AstraZeneca. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedes, K., Wetterskog, D., Ashworth, A. et al. Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol 8, 261–271 (2011). https://doi.org/10.1038/nrclinonc.2010.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.216

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer