Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preclinical development of molecular-targeted agents for cancer

Abstract

Molecular-targeted agents are increasingly used for the treatment of cancer. However, the attrition rate for drugs that enter early clinical trials is higher than for other branches of internal medicine, suggesting that preclinical development has not been successful in identifying agents that can modify the outcome of human cancer. New preclinical strategies including genetically engineered mouse models and small-interfering RNAs are being used to evaluate novel agents, and have aided in the development of compounds, such as inhibitors of phosphatidylinositol 3-kinase or poly(ADP-ribose) polymerase. In addition, these techniques have helped in the identification of promising combinations of targeted drugs. In this Review, we describe methods for the preclinical evaluation of novel agents, their limitations, and strategies for improvement.

Key Points

  • The attrition rate of potential new drugs in oncology is higher than for other therapeutic areas of medicine

  • Improvement in preclinical methods to evaluate potential anticancer agents could decrease the high attrition rate in oncology

  • Novel in vitro and in vivo models including cell lines with defined molecular properties, small-interfering RNA libraries and genetically-modified mice have helped in the development of novel agents

  • Drugs that are currently in development, such as poly(ADP-ribose) polymerase and phosphatidylinositol 3-kinase inhibitors, are examples of compounds that have been developed using the above models

  • Novel methods to provide better knowledge of mechanisms of action of potential anticancer agents could assist the development of new compounds

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of potential anticancer drugs.
Figure 2: Preclinical models to evaluate anticancer drugs.
Figure 3: Methods to decrease attrition rate in drug development.

Similar content being viewed by others

References

  1. DiMasi, J. A. & Grabowski, H. G. Economics of new oncology drug development. J. Clin. Oncol. 25, 209–216 (2007).

    Article  PubMed  Google Scholar 

  2. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Sawyers, C. L. Translational research: are we on the right track? 2008 American Society for Clinical Investigation Presidential Address. J. Clin. Invest. 118, 3798–3801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Rubinstein, L. V. et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl Cancer Inst. 82, 1113–1118 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Szacáks, G. & Gottesman, M. Comparing solid tumors with cell lines: implications for identifying drug resistance genes in cancer. Mol. Interv. 4, 323–325 (2004).

    Article  Google Scholar 

  7. Sharma, S. V., Haber, D. A. & Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer 10, 241–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Deininger, M. W., Goldman, J. M., Lydon, N. & Melo, J. V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR–ABL-positive cells. Blood 90, 3691–3698 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Garayoa, M. et al. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23, 1515–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Azab, A. K. et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113, 4341–4351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McMillin, D. W. et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res. 69, 5835–5842 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Ocio, E. M. et al. Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks. Blood 113, 3781–3791 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Mitsiades, C. S. et al. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 68, 5216–5225 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ocaña, A., Hortobagyi, G. N. & Esteva, F. J. Concomitant versus sequential chemotherapy in the treatment of early-stage and metastatic breast cancer. Clin. Breast Cancer 6, 495–504 (2006).

    Article  PubMed  Google Scholar 

  15. Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Polyak, K., Haviv, I. & Campbell, I. G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 25, 30–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Korkaya, H., Paulson, A., Iovino, F. & Wicha, M. S. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27, 6120–6130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubrovska, A. et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl Acad. Sci. USA 106, 268–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Vlashi, E. et al. In vivo imaging, tracking, and targeting of cancer stem cells. J. Natl Cancer Inst. 101, 350–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dreher, M. R. et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl Cancer Inst. 98, 335–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Primeau, A. J., Rendon, A., Hedley, D., Lilge, L. & Tannock, I. F. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11, 8782–8788 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Huxham, L. A., Kyle, A. H., Baker, J. H., Nykilchuk, L. K. & Minchinton, A. I. Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res. 64, 6537–6541 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Casciari, J. J. et al. Growth and chemotherapeutic response of cells in a hollow-fiber in vitro solid tumor model. J. Natl Cancer Inst. 86, 1846–1852 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Decker, S., Hollingshead, M., Bonomi, C. A., Carter, J. P. & Sausville, E. A. The hollow fibre model in cancer drug screening: the NCI experience. Eur. J. Cancer 40, 821–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teicher, B. A. Tumor models for efficacy determination. Mol. Cancer Ther. 5, 2435–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Olive, K. P. & Tuveson, D. A. The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin. Cancer Res. 12, 5277–5287 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Graves, E. E., Weissleder, R. & Ntziachristos, V. Fluorescence molecular imaging of small animal tumor models. Curr. Mol. Med. 4, 419–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Carver, B. S. & Pandolfi, P. P. Mouse modeling in oncologic preclinical and translational research. Clin. Cancer Res. 12, 5305–5311 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Bibby, M. C. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur. J. Cancer 40, 852–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura, T., Fidler, I. J. & Coombes, K. R. Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res. 67, 139–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Rangarajan, A. & Weinberg, R. A. Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat. Rev. Cancer 3, 952–959 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Balmain, A. Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell 108, 145–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Stewart, T. A., Bellve, A. R. & Leder, P. Transcription and promoter usage of the myc gene in normal somatic and spermatogenic cells. Science 226, 707–710 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48, 1023–1034 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, X. et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA 104, 12111–12116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20, 1496–1510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9, 485–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Strecker, T. E. et al. Effect of lapatinib on the development of estrogen receptor-negative mammary tumors in mice. J. Natl Cancer Inst. 101, 107–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujishita, T., Aoki, K., Lane, H. A., Aoki, M. & Taketo, M. M. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc. Natl Acad. Sci. USA 105, 13544–13549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Orban, P. C., Chui, D. & Marth, J. D. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6861–6865 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sauer, B. & McDermott, J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 32, 6086–6095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl Acad. Sci. USA 93, 10933–10938 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rottenberg, S. et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc. Natl Acad. Sci. USA 104, 12117–12122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gillies, R. J. et al. Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2, 139–151 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bradley, D. P. et al. Examining the acute effects of cediranib (RECENTIN, AZD2171) treatment in tumor models: a dynamic contrast-enhanced MRI study using gadopentate. Magn. Reson. Imaging 27, 377–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Morgan, B. et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J. Clin. Oncol. 21, 3955–3964 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Kennel, S. J. et al. High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med. Phys. 27, 1101–1107 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Rooks, V., Beecken, W. D., Iordanescu, I. & Taylor, G. A. Sonographic evaluation of orthotopic bladder tumors in mice treated with TNP-470, an angiogenic inhibitor. Acad. Radiol. 8, 121–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Drevs, J. et al. Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 60, 4819–4824 (2000).

    CAS  PubMed  Google Scholar 

  62. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  66. Zalutsky, M. R. et al. Radioiodinated antibody targeting of the HER-2/neu oncoprotein: effects of labeling method on cellular processing and tissue distribution. Nucl. Med. Biol. 26, 781–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Austin, C. D. et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell 15, 5268–5282 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Iorns, E., Lord, C. J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226–231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Turner, N. C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iorns, E. et al. Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE 4, e5120 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13, 91–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Goulart, B. H. et al. Trends in the use and role of biomarkers in phase I oncology trials. Clin. Cancer Res. 13, 6719–6726 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Shah, N. P. et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J. Clin. Oncol. 26, 3204–3212 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Shah, N. P. et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14, 485–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Oda, T. et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J. Biol. Chem. 269, 22925–22928 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Tanaka, C. et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J. Clin. Oncol. 26, 1596–1602 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Ritter, C. A. et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin. Cancer Res. 13, 4909–4919 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ayers, M., Fargnoli, J., Lewin, A., Wu, Q. & Platero, J. S. Discovery and validation of biomarkers that respond to treatment with brivanib alaninate, a small-molecule VEGFR-2/FGFR-1 antagonist. Cancer Res. 67, 6899–6906 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8, 459–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Ocana, A., Serrano, R., Calero, R. & Pandiella, A. Novel tyrosine kinase inhibitors in the treatment of cancer. Curr. Drug Targets 10, 575–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Minami, Y. et al. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene 26, 5023–5027 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Engelman, J. A. et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 67, 11924–11932 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Jabbour, E. et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 20, 1767–1773 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Kantarjian, H. et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354, 2542–2551 (2006).

    Article  PubMed  Google Scholar 

  93. Kwak, E. L. et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl Acad. Sci. USA 102, 7665–7670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, D. et al. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 12, 81–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ocaña, A. & Amir, E. Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions. Cancer Treat. Rev. 3, 685–691 (2009).

    Article  CAS  Google Scholar 

  96. Burstein, H. et al. Neratinib (HKI-272), an irreversible pan erbB receptor tyrosine kinase inhibitor: phase 2 results in patients with advanced HER2+ breast cancer [abstract]. Cancer Res. 69 (Suppl.), a37 (2008).

    Google Scholar 

  97. Ocana, A., Amir, E., Seruga, B. & Pandiella, A. Do we have to change the way targeted drugs are developed? J. Clin. Oncol. 28, 420–421 (2010).

    Article  Google Scholar 

  98. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Faber, A. C. et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc. Natl Acad. Sci. USA 106, 19503–19508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaelin, W. G. Jr . The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat. Rev. Cancer 4, 814–819 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Iglehart, J. D. & Silver, D. P. Synthetic lethality—a new direction in cancer-drug development. N. Engl. J. Med. 361, 189–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Garber, J. E. et al. Neo-adjuvant cisplatin (CDDP) in triple-negative breast cancer (BC) [abstract]. Breast Cancer Res. Treat. 100 (Suppl. 1), a3074 (2006).

    Google Scholar 

  104. O'Shaughnessy, J. et al. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized phase II trial [abstract]. J. Clin. Oncol. 27 (18 Suppl.), a3 (2009).

    Article  Google Scholar 

  105. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Sliwkowski, M. X. et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60–70 (1999).

    CAS  PubMed  Google Scholar 

  107. Gelmon, K. A. et al. Results of a phase II trial of trastuzumab (H) and pertuzumab (P) in patients (pts) with HER2-positive metastatic breast cancer (MBC) who had progressed during trastuzumab therapy [abstract]. J. Clin. Oncol. 26 (Suppl.), a1026 (2008).

    Article  Google Scholar 

  108. Craft, N., Shostak, Y., Carey, M. & Sawyers, C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Raben, D. et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin. Cancer Res. 11, 795–805 (2005).

    CAS  PubMed  Google Scholar 

  110. Huang, S. M. & Harari, P. M. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin. Cancer Res. 6, 2166–2174 (2000).

    CAS  PubMed  Google Scholar 

  111. Ciardiello, F. et al. Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin. Cancer Res. 5, 909–916 (1999).

    CAS  PubMed  Google Scholar 

  112. Greulich, H. et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2, e313 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ng, S. S., Tsao, M. S., Nicklee, T. & Hedley, D. W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 1, 777–783 (2002).

    CAS  PubMed  Google Scholar 

  114. Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99, 628–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Rabindran, S. K. et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 64, 3958–3965 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Dudkin, L. et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res. 7, 1758–1764 (2001).

    CAS  PubMed  Google Scholar 

  117. She, Q. B. et al. Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE 3, e3065 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Hay, T. et al. Poly(ADP-ribose) polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. Cancer Res. 69, 3850–3855 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Hu, Y. et al. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc. Natl Acad. Sci. USA 103, 16870–16875 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guix, M. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118, 2609–2619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Ocana and A. Pandiella researched data for the article. All authors provided a substantial contribution to the discussion of content. A. Ocana and I. F. Tannock wrote the manuscript and all authors contributed to the editing and review of the manuscript before submission.

Corresponding author

Correspondence to Ian F. Tannock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocana, A., Pandiella, A., Siu, L. et al. Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol 8, 200–209 (2011). https://doi.org/10.1038/nrclinonc.2010.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing