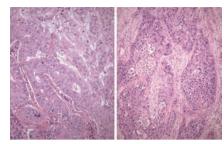
RESEARCH HIGHLIGHTS

GENETICS First prognostic signature for adjuvant lung cancer therapy

The introduction of adjuvant cisplatinbased chemotherapy (ACT) to the treatment options for patients with resected non-small-cell lung cancer (NSCLC) has improved survival. 5-year survival was improved by 4–15%, but no survival effects have been observed in patients with early-stage I disease. Indeed, it has been reported that patients with stage IA disease might be detrimentally affected by treatment with ACT.

"Currently there is a need for prognostic and predictive molecular biomarkers, independent of tumor stage, to select early-stage NSCLC patients to be treated by ACT," explained Ming-Sound Tsao. Tsao led a group of researchers who addressed this problem using geneexpression profiling to assess mRNA from 133 frozen samples from the randomized JBR.10 trial that compared ACT with observation.


A 15-gene signature was obtained from the 62 samples of patients treated

with surgery alone then, as Tsao explains, "a new method based on maximum R² analysis was used to identify a minimum gene set that can clearly distinguish the poor from good prognosis patients."

The identified 15-gene signature was validated using four independent datasets and by quantitative reverse-transcription PCR. This revealed that the signature was an independent prognostic factor.

Other signatures have been reported for NSCLC, the difference in this study was highlighted by Tsao; "the signature was then tested in the microarray data of 71 JBR.10 patients who received ACT for its ability to predict benefit from ACT." JBR.10 has snap-frozen tumor samples available for gene-expression analysis from both treated and observation patients, and Tsao and his team have taken advantage of this opportunity.

The signature also classified the 71 chemotherapy-treated patients into

Histology of non-small-cell lung cancer. Left panel, adenocarcinoma; right panel, squamous cell carcinoma. Image courtesy of M. S. Tsao.

low-risk and high-risk groups; ACT prolonged survival in the high-risk patients but was not beneficial, and potentially even detrimental, in low-risk patients.

Future plans for these data include "the development of a small-gene-set assay that can be performed more easily in clinical diagnostic laboratories and prospective validation of the signature in future earlystage NSCLC adjuvant chemotherapy trials," explained Tsao.

Rebecca Kirk

Original article Zhu, C. Q. et al. Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J. Clin. Oncol. 28, 4417–4424 (2010)