Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Future directions of bone-targeted therapy for metastatic breast cancer

Abstract

Bone is the most common metastatic site for breast cancer, and bone metastases can cause pain as well as risk of pathological fractures. Emerging treatments for metastatic bone disease have arisen from advances in our understanding of the unique cellular and molecular mechanisms that contribute to bone metastasis. The interaction between tumor cells and the bone microenvironment results in a 'vicious cycle' that increases both bone destruction and tumor burden. The tumor secretes factors, such as parathyroid hormone-related peptide, that stimulate osteoclastogenesis. Similarly, the bone stroma produces growth factors, such as transforming growth factor β, that promote tumor growth in bone. Therapeutic targeting of these microenvironmental factors is under intensive investigation. Other attractive therapeutic targets include signaling molecules, such as receptor activator of nuclear factor κB ligand, Src kinase, and cathepsin K, all of which regulate osteoclast function, and chemokine receptor 4, which is involved in the homing of tumor cells to bone. In this Review, we describe the progress and future directions of novel bone-targeted therapies that may reduce or prevent destructive bone metastasis from breast cancer. Novel modalities for predicting and monitoring treatment response will also be described.

Key Points

  • A more thorough understanding of the interaction between tumor cells and the bone microenvironment will direct the development of novel bone-targeted treatments

  • Adjuvant bisphosphonate treatments, especially zoledronic acid, may have antitumor effects that both prevent and treat bone metastasis, as well as improving survival

  • Denosumab is a promising agent that might be more effective than bisphosphonates in preventing skeletal-related events in metastatic breast cancer; whether denosumab has antitumor effects is not yet clear

  • In addition to denosumab, Src kinase inhibitors are promising agents under development for the treatment of bone metastases from breast cancer

  • Systemic radionuclide therapy may have antitumor effects that lead to improved survival

  • Imaging modalities, gene-expression signatures, bone markers, disseminated tumor cells, and circulating tumor cells are under investigation as means of directing personalized treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The interaction between tumor cells and the bone microenvironment.

Similar content being viewed by others

Robert E. Coleman, Peter I. Croucher, … Luis Costa

References

  1. Coleman, R. E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27, 165–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  4. Roodman, G. D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Mundy, G. R. & Yoneda, T. Bisphosphonates as anticancer drugs. N. Engl. J. Med. 339, 398–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Clézardin, P., Fournier, P., Boissier, S. & Peyruchaud, O. In vitro and in vivo antitumor effects of bisphosphonates. Curr. Med. Chem. 10, 173–180 (2003).

    Article  PubMed  Google Scholar 

  7. Fromigue, O., Lagneaux, L. & Body, J. J. Bisphosphonates induce breast cancer cell death in vitro. J. Bone Miner. Res. 15, 2211–2221 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ottewell, P. D. et al. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J. Natl Cancer Inst. 100, 1167–1178 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Wood, J. et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J. Pharmacol. Exp. Ther. 302, 1055–1061 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Pavlakis, N., Schmidt, R. & Stockler, M. Bisphosphonates for breast cancer. Cochrane Database of Systematic Reviews, Issue 3. Art. no.: CD003474. doi:10.1002/14651858.CD003474.pub2 (2005).

  11. Kristensen, B. et al. Bisphosphonate treatment in primary breast cancer: results from a randomised comparison of oral pamidronate versus no pamidronate in patients with primary breast cancer. Acta Oncol. 47, 740–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Diel, I. J. et al. Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann. Oncol. 19, 2007–2011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diel, I. J. et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N. Engl. J. Med. 339, 357–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Powles, T. et al. Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res. 8, R13 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Saarto, T., Vehmanen, L., Virkkunen, P. & Blomqvist, C. Ten-year follow-up of a randomized controlled trial of adjuvant clodronate treatment in node-positive breast cancer patients. Acta Oncol. 43, 650–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ha, T. C. & Li, H. Meta-analysis of clodronate and breast cancer survival. Br. J. Cancer 96, 1796–1801 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Eidtmann, H. et al. Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST Study. Ann. Oncol. doi:10.1093/annonc/mdq217.

  19. Brufsky, A. M. et al. Zoledronic acid effectively prevents aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole: Z-FAST study 36-month follow-up results. Clin. Breast Cancer 9, 77–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. LLombarto, A. et al. Effect of zoledronic acid on aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole: E-ZO-FAST 36-month follow up [abstract 231]. ASCO Meeting Abstracts 2009.

  21. Costa, L. et al. Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J. Clin. Oncol. 20, 850–856 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Brown, J. E. et al. Bone resorption predicts for skeletal complications in metastatic bone disease. Br. J. Cancer 89, 2031–2037 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lipton, A. et al. Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer 113, 193–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Woodward, J. K., Neville-Webbe, H. L., Coleman, R. E. & Holen, I. Combined effects of zoledronic acid and doxorubicin on breast cancer cell invasion in vitro. Anticancer Drugs 16, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ottewell, P. D. et al. Differential effect of doxorubicin and zoledronic acid on intraosseous versus extraosseous breast tumor growth in vivo. Clin. Cancer Res. 14, 4658–4666 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Coleman, R. E. et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br. J. Cancer 102, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aft, R. et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol. 11, 421–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fournier, P. et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res. 62, 6538–6544 (2002).

    CAS  PubMed  Google Scholar 

  29. Santini, D. et al. Changes in bone resorption and vascular endothelial growth factor after a single zoledronic acid infusion in cancer patients with bone metastases from solid tumours. Oncol. Rep. 15, 1351–1357 (2006).

    CAS  PubMed  Google Scholar 

  30. Tas, F. et al. Effect of zoledronic acid on serum angiogenic factors in patients with bone metastases. Med. Oncol. 25, 346–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Stopeck, A. et al. A comparison of denosumab versus zoledronic acid for the prevention of skeletal-related events in breast cancer patients with bone metastases [abstract]. Cancer Res. 69 (Suppl. 3), 22 (2009).

    Article  Google Scholar 

  33. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Body, J. J. et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin. Cancer Res. 12, 1221–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Thomas, D. et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 11, 275–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ellis, G. K. et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J. Clin. Oncol. 26, 4875–4882 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Lipton, A. et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin. Cancer Res. 14, 6690–6696 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lipton, A. et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Fizazi, K. et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 27, 1564–1571 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Whyte, M. P. The long and the short of bone therapy. N. Engl. J. Med. 354, 860–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Canon, J. R. et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin. Exp. Metastasis 25, 119–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Rucci, N. et al. Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J. Pharmacol. Exp. Ther. 318, 161–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hiscox, S., Jordan, N. J., Morgan, L., Green, T. P. & Nicholson, R. I. Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin. Exp. Metastasis 24, 157–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Hiscox, S. et al. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res. Treat. 97, 263–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Verbeek, B. S. et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol. 180, 383–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Summy, J. M. & Gallick, G. E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 22, 337–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Metcalf, C. A. 3rd, van Schravendijk, M. R., Dalgarno, D. C. & Sawyer, T. K. Targeting protein kinases for bone disease: discovery and development of Src inhibitors. Curr. Pharm. Des. 8, 2049–2075 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Marzia, M. et al. Decreased c-Src expression enhances osteoblast differentiation and bone formation. J. Cell Biol. 151, 311–320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Horne, W. C. et al. Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J. Cell Biol. 119, 1003–1013 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Sanjay, A. et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol. 152, 181–195 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyce, B. F., Yoneda, T., Lowe, C., Soriano, P. & Mundy, G. R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J. Clin. Invest. 90, 1622–1627 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Myoui, A. et al. C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res. 63, 5028–5033 (2003).

    CAS  PubMed  Google Scholar 

  56. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hall, T. J., Schaeublin, M. & Missbach, M. Evidence that c-src is involved in the process of osteoclastic bone resorption. Biochem. Biophys. Res. Commun. 199, 1237–1244 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Yoneda, T. et al. Herbimycin A, a pp60c-src tyrosine kinase inhibitor, inhibits osteoclastic bone resorption in vitro and hypercalcemia in vivo. J. Clin. Invest. 91, 2791–2795 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lombardo, L. J. et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Finn, R. S. et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res. Treat. 105, 319–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Huang, F. et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res. 67, 2226–2238 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Finn, R. S. et al. Phase II trial of dasatinib in triple-negative breast cancer: results of study CA180059 [abstract 3118]. SABCS Meeting Abstracts 2008.

  63. de Vries, T. J. et al. The Src inhibitor AZD0530 reversibly inhibits the formation and activity of human osteoclasts. Mol. Cancer Res. 7, 476–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Hiscox, S. et al. Dual targeting of Src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res. Treat. 115, 57–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Y. et al. Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin. Cancer Res. 15, 3396–3405 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Herynk, M. H. et al. Cooperative action of tamoxifen and c-Src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol. Cancer Ther. 5, 3023–3031 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Jallal, H. et al. A Src/Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer Res. 67, 1580–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Vultur, A. et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol. Cancer Ther. 7, 1185–1194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Drake, F. H. et al. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271, 12511–12516 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Silver, I. A., Murrills, R. J. & Etherington, D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175, 266–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Garnero, P. et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem. 273, 32347–32352 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Gowen, M. et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J. Bone Miner. Res. 14, 1654–1663 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Saftig, P. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl Acad. Sci. USA 95, 13453–13458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Le Gall, C. et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res. 67, 9894–9902 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Adami, S. et al. Effect of one year treatment with the cathepsin-K inhibitor, balicatib, on bone mineral density in postmenopausal women with osteopenia/osteoporosis [abstract]. J. Bone Miner. Res. 21 (Suppl. 1), 1085 (2006).

    Google Scholar 

  76. Peroni, A. et al. Drug-induced morphea: report of a case induced by balicatib and review of the literature. J. Am. Acad. Dermatol. 59, 125–129 (2008).

    Article  PubMed  Google Scholar 

  77. Falgueyret, J. P. et al. Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J. Med. Chem. 48, 7535–7543 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Khalfan, H. A. Study of thiol proteases of normal human skin fibroblasts. Cell Biochem. Funct. 9, 55–62 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Bone, H. G. et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J. Bone Miner. Res. 25, 937–947 (2010).

    PubMed  Google Scholar 

  80. Ramirez, G. et al. Effect of cathepsin K inhibition on suppression of bone resorption in women with breast cancer and established bone metastases in a 4-week, double-blind, randomized controlled trial [abstract 209]. ASCO Breast Cancer Symposium 2008.

  81. Guise, T. A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guise, T. A. et al. Molecular mechanisms of breast cancer metastases to bone. Clin. Breast Cancer 5 (Suppl. 2), S46–S53 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Linforth, R. et al. Coexpression of parathyroid hormone related protein and its receptor in early breast cancer predicts poor patient survival. Clin. Cancer Res. 8, 3172–3177 (2002).

    CAS  PubMed  Google Scholar 

  85. Henderson, M. A. et al. Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Res. 66, 2250–2256 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Yin, J. J. et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl Acad. Sci. USA 102, 13909–13914 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ishida, A., Fujita, N., Kitazawa, R. & Tsuruo, T. Transforming growth factor-beta induces expression of receptor activator of NF-kappa B ligand in vascular endothelial cells derived from bone. J. Biol. Chem. 277, 26217–26224 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Sanchez-Sweatman, O. H., Lee, J., Orr, F. W. & Singh, G. Direct osteolysis induced by metastatic murine melanoma cells: role of matrix metalloproteinases. Eur. J. Cancer 33, 918–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Duivenvoorden, W. C., Hirte, H. W. & Singh, G. Transforming growth factor beta1 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells. Clin. Exp. Metastasis 17, 27–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. de Jong, J. S., van Diest, P. J., van der Valk, P. & Baak, J. P. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J. Pathol. 184, 53–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Beck, C., Schreiber, H. & Rowley, D. Role of TGF-beta in immune-evasion of cancer. Microsc. Res. Tech. 52, 387–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Shi, Y. & Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Massagué, J. TGFbeta in cancer. Cell 134, 215–230 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mourskaia, A. A. et al. Transforming growth factor-beta1 is the predominant isoform required for breast cancer cell outgrowth in bone. Oncogene 28, 1005–1015 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Ehata, S. et al. Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 98, 127–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Bandyopadhyay, A. et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res. 66, 6714–6721 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Oettle, H. et al. Interim results of the phase I/II study of trabedersen (AP 12009) in patients with pancreatic carcinoma, malignant melanoma, or colorectal carcinoma [abstract 4619]. ASCO Meeting Abstracts 2009.

  101. Bogdahn, U. et al. Randomized, active-controlled phase IIb study with trabedersen (AP 12009) in recurrent or refractory high-grade glioma patients: Basis for phase III endpoints [abstract 2037]. ASCO Meeting Abstracts 2009.

  102. Nemunaitis, J. et al. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther. 16, 620–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Morris, J. C. et al. Phase I/II study of GC1008: a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC) [abstract 9028]. ASCO Meeting Abstracts 2008.

  104. Tan, A. R., Alexe, G. & Reiss, M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res. Treat. 115, 453–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Nagaraj, N. S. & Datta, P. K. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin. Investig. Drugs 19, 77–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Padua, D. et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baselga, J. et al. TGF-beta signalling-related markers in cancer patients with bone metastasis. Biomarkers 13, 217–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  PubMed  Google Scholar 

  109. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Cabioglu, N. et al. Chemokine receptors in advanced breast cancer: differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann. Oncol. 20, 1013–1019 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Richert, M. M. et al. Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol. Rep. 21, 761–767 (2009).

    CAS  PubMed  Google Scholar 

  114. Huang, E. H. et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J. Surg. Res. 155, 231–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Hotte, S. J. et al. Final results of a phase I/II study of CTCE-9908, a novel anticancer agent that inhibits CXCR4, in patients with advanced solid cancers [abstract 405]. 20th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics 2008.

  116. Brave, M. et al. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology 78, 282–288 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Denoyelle, C., Hong, L., Vannier, J. P., Soria, J. & Soria, C. New insights into the actions of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-dependent and -independent effects. Br. J. Cancer 88, 1631–1640 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tu, S. M. et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 357, 336–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Palmedo, H. et al. Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J. Clin. Oncol. 21, 2869–2875 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Amato, R. J., Hernandez-McClain, J. & Henary, H. Bone-targeted therapy: phase II study of strontium-89 in combination with alternating weekly chemohormonal therapies for patients with advanced androgen-independent prostate cancer. Am. J. Clin. Oncol. 31, 532–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Ueno, N. T. et al. Pilot study of targeted skeletal radiation therapy for bone-only metastatic breast cancer. Clin. Breast Cancer 9, 173–177 (2009).

    Article  PubMed  Google Scholar 

  122. Hamaoka, T., Madewell, J. E., Podoloff, D. A., Hortobagyi, G. N. & Ueno, N. T. Bone imaging in metastatic breast cancer. J. Clin. Oncol. 22, 2942–2953 (2004).

    Article  PubMed  Google Scholar 

  123. Bäuerle, T. & Semmler, W. Imaging response to systemic therapy for bone metastases. Eur. Radiol. 19, 2495–2507 (2009).

    Article  PubMed  Google Scholar 

  124. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Cristofanilli, M. et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 23, 1420–1430 (2005).

    Article  PubMed  Google Scholar 

  127. De Giorgi, U. et al. Circulating tumor cells and bone metastases as detected by FDG-PET/CT in patients with metastatic breast cancer. Ann. Oncol. 21, 33–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Smid, M. et al. Genes associated with breast cancer metastatic to bone. J. Clin. Oncol. 24, 2261–2267 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Woelfle, U. et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 63, 5679–5684 (2003).

    CAS  PubMed  Google Scholar 

  131. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH Cancer Center Support Grant CA016672, and by the Nellie B. Connally Breast Cancer Research Fund. We thank Sunita Patterson (Department of Scientific Publications at The University of Texas MD Anderson Cancer Center) for editorial assistance. C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

T. Onishi and N. T. Ueno contributed to discussion of content for the article, researched data to include in the manuscript, wrote the content, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer reviewers' comments. N. Hayashi researched data to include in the manuscript and contributed to the writing. R. L. Theriault and G. N. Hortobagyi reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Naoto T. Ueno.

Ethics declarations

Competing interests

G. N. Hortobagyi has worked as a consultant for Merck and Sanofi-Aventis, and has received a grant/research support from and worked as a consultant for Novartis. N. T. Ueno has received a grant/research support from EUSA Pharma. T. Onishi, N. Hayashi, and R. L. Theriault declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onishi, T., Hayashi, N., Theriault, R. et al. Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol 7, 641–651 (2010). https://doi.org/10.1038/nrclinonc.2010.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.134

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer