Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantitative imaging biomarkers in neuro-oncology

Abstract

Conventional structural imaging provides limited information on tumor characterization and prognosis. Advances in neurosurgical techniques, radiotherapy planning and novel drug treatments for brain tumors have generated increasing need for reproducible, noninvasive, quantitative imaging biomarkers. This Review considers the role of physiological MRI and PET molecular imaging in understanding metabolic processes associated with tumor growth, blood flow and ultrastructure. We address the utility of various techniques in distinguishing between tumors and non-neoplastic processes, in tumor grading, in defining anatomical relationships between tumor and eloquent brain regions and in determining the biological substrates of treatment response. Much of the evidence is derived from limited case series in individual centers. Despite their 'added value', the effect of these techniques as an adjunct to structural imaging in clinical research and practice remains limited.

Key Points

  • Physiological and functional MRI is widely accessible, and provides quantitative biomarkers of blood flow and permeability, cellular turnover and tissue ultrastructure

  • Molecular imaging with PET is many orders of magnitude more sensitive, and yields additional information on specific biochemical pathways and ligand interactions, but is costly and limited to more specialist cancer centers

  • The majority of evidence derives from limited case series in individual centers, determined by local facilities and expertise

  • These techniques are useful for tumor characterization, treatment planning and therapeutic evaluation

  • Their application in routine clinical practice and prospective trials has, to date, been limited

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fractional anisotropy of peritumoral brain.
Figure 2: Tissue characterization and biopsy guidance using perfusion imaging and spectroscopy.
Figure 3: Diagnosis and surgical planning using co-registered rCBV, MRS, functional MRI and DTI data.
Figure 4: Metabolic imaging with MET PET and FDG PET in a patient with a suspected recurrence of glioblastoma multiforme.

Similar content being viewed by others

References

  1. Sorensen, A. G. et al. Comparison of diameter and perimeter methods for tumor volume calculation. J. Clin. Oncol. 19, 551–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Tate, A. et al. Automated classification of short echo time in in vivo1H brain tumor spectra: a multicenter study. Magn. Reson. Med. 49, 29–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Preul, M., Caramanos, Z., Leblanc, R., Villemure, J. G. & Arnold, D. L. Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR Biomed. 11, 192–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Devos, A. et al. Classification of brain tumours using short echo time 1H MR spectra. J. Magn. Reson. 170, 164–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Sadeghi, N. et al. Effect of hydrophilic components of the extracellular matrix on quantifiable diffusion-weighted imaging of human gliomas: preliminary results of correlating apparent diffusion coefficient values and hyaluronan expression level. AJR Am. J. Roentgenol. 181, 235–241 (2003).

    Article  PubMed  Google Scholar 

  6. Omuro, A., Leite, C. C., Mokhtari, K. & Delattre, J. Y. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 5, 937–948 (2006).

    Article  PubMed  Google Scholar 

  7. Fertikh, D. et al. Discrimination of capsular stage brain abscesses from necrotic or cystic neoplasms using diffusion-weighted magnetic resonance imaging. J. Neurosurg. 106, 76–81 (2007).

    Article  PubMed  Google Scholar 

  8. Nadal Desbarats, L. et al. Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparent diffusion coefficient and normalized diffusion-weighted images. Magn. Reson. Imaging 21, 645–650 (2003).

    Article  PubMed  Google Scholar 

  9. Erdogan, C., Hakyemez, B., Yildirim, N. & Parlak, M. Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J. Comput. Assist. Tomogr. 29, 663–667 (2005).

    Article  PubMed  Google Scholar 

  10. Holmes, T., Petrella, J. R. & Provenzale, J. M. Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. AJR Am. J. Roentgenol. 183, 1247–1252 (2004).

    Article  PubMed  Google Scholar 

  11. Law, M. et al. Differentiating surgical from non-surgical lesions using perfusion MR imaging and proton MR spectroscopic imaging. Technol. Cancer Res. Treat. 3, 557–565 (2004).

    Article  PubMed  Google Scholar 

  12. Bink, A. et al. Importance of diffusion-weighted imaging in the diagnosis of cystic brain tumors and intracerebral abscesses. Zentralbl. Neurochir. 66, 119–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Mascalchi, M. et al. Diffusion-weighted MR of the brain: methodology and clinical application. Radiol. Med. 109, 155–197 (2005).

    PubMed  Google Scholar 

  14. Cha, S. et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am. J. Neuroradiol. 22, 1109–1116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. De Stefano, N. et al. In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen in multiple sclerosis using 1H magnetic resonance spectroscopic imaging. Ann. Neurol. 44, 273–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Law, M., Meltzer, D. E. & Cha, S. Spectroscopic magnetic resonance imaging of a tumefactive demyelinating lesion. Neuroradiology 44, 986–989 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Herholz, K. et al. 11C methionine PET for differential diagnosis of low-grade gliomas. Neurology 50, 1316–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rollin, N. et al. Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48, 150–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Strugar, J., Rothbart, D., Harrington, W. & Criscuolo, G. R. Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J. Neurosurg. 81, 560–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Strugar, J., Criscuolo, G. R., Rothbart, D. & Harrington, W. N. Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor- associated cysts. J. Neurosurg. 83, 682–689 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, S. et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232, 221–228 (2004).

    Article  PubMed  Google Scholar 

  22. Chiang, I. et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3 T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 46, 619–627 (2004).

    Article  PubMed  Google Scholar 

  23. Kleihues, P. and Cavanee, W. K. (Eds) World Health Organization Classification of Tumours: Pathology and Genetics: Tumours of the Nervous System (IARC, Lyon, 2000).

    Google Scholar 

  24. Tozer, D. et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed. 20, 49–57 (2007).

    Article  PubMed  Google Scholar 

  25. Cha, S. et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am. J. Neuroradiol. 26, 266–273 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Lev, M. H. et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am. J. Neuroradiol 25, 214–221 (2004).

    PubMed  PubMed Central  Google Scholar 

  27. Sugahara, T. et al. Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top. Magn. Reson. Imaging 10, 114–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Cha, S. et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223, 11–29 (2002).

    Article  PubMed  Google Scholar 

  29. Calli, C. et al. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur. J. Radiol. 58, 394–403 (2006).

    Article  PubMed  Google Scholar 

  30. Weber, M. A. et al. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66, 1899–1906 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, S. et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR Am. J. Neuroradiol. 24, 1554–1559 (2003).

    PubMed  PubMed Central  Google Scholar 

  32. Filippi, C. G. et al. Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am. J. Neuroradiol. 22, 65–72 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Law, M. MR spectroscopy of brain tumors. Top. Magn. Reson. Imaging 15, 291–313 (2004).

    Article  PubMed  Google Scholar 

  34. Kremer, S. et al. Contribution of dynamic contrast MR imaging to the differentiation between dural metastasis and meningioma. Neuroradiology 46, 642–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Sugahara, T. et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am. J. Roentgenol. 171, 1479–1486 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Maia, A. et al. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am. J. Neuroradiol. 26, 777–783 (2005).

    PubMed  PubMed Central  Google Scholar 

  38. Law, M. et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am. J. Neuroradiol. 25, 746–755 (2004).

    PubMed  PubMed Central  Google Scholar 

  39. Law, M. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am. J. Neuroradiol. 24, 1989–1998 (2003).

    PubMed  PubMed Central  Google Scholar 

  40. Cha, S. et al. Comparison of microvascular permeability measurements, Ktrans, determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am. J. Neuroradiol. 27, 409–417 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Patankar, T. F. et al. Is volume transfer coefficient (Ktrans) related to histologic grade in human gliomas? AJNR Am. J. Neuroradiol. 26, 2455–2465 (2005).

    PubMed  PubMed Central  Google Scholar 

  42. Sugahara, T. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging 9, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, D. et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion- weighted MRI. Neuroradiology 44, 656–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lam, W. W., Poon, W. S. & Metreweli, C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin. Radiol. 57, 219–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Stadlbauer, A. et al. Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 240, 803–810 (2006).

    Article  PubMed  Google Scholar 

  46. Hourani, R. et al. Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am. J. Neuroradiol. 29, 366–372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Howe, F. A. et al. Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magn. Reson. Med. 49, 223–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Stadlbauer, A. et al. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238, 958–969 (2006).

    Article  PubMed  Google Scholar 

  49. McKnight, T. R. et al. Correlation of magnetic resonance spectroscopic and growth characteristics within grades II and III gliomas. J. Neurosurg. 106, 660–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Price, S. J. et al. Diffusion tensor imaging of brain tumours at 3 T: a potential tool for assessing white matter tract invasion? Clin. Radiol. 58, 455–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Pallud, J. et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann. Neurol. 60, 380–383 (2006).

    Article  PubMed  Google Scholar 

  52. Rees, J. et al. Volumes and growth rates of untreated adult low-grade gliomas indicate risk of early malignant transformation. Eur. J. Radiol. doi:10.1016/j.ejrad.2008.06.013.

    Article  PubMed  Google Scholar 

  53. Law, M. et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology 238, 658–667 (2006).

    Article  PubMed  Google Scholar 

  54. Danchaivijitr, N. et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247, 170–178 (2008).

    Article  PubMed  Google Scholar 

  55. van den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J. Clin. Oncol. 24, 2715–2722 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Intergroup Radiation Therapy Oncology Group Trial 9402, Cairncross, G. et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J. Clin. Oncol. 24, 2707–2714 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Jenkinson, M. et al. Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology 48, 703–713 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Megyesi, J. F. et al. Imaging correlates of molecular signatures in oligodendrogliomas. Clin. Cancer Res. 10, 4303–4306 (2004).

    Article  PubMed  Google Scholar 

  59. Brown, R. et al. The use of magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin. Cancer Res. 14, 2357–2362 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Aghi, M. et al. Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma. Clin. Cancer Res. 11, 8600–8605 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Aronen, H. J. et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin. Cancer Res. 6, 2189–2200 (2000).

    CAS  PubMed  Google Scholar 

  62. Pirotte, B. et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J. Neurosurg. 104, 238–253 (2006).

    Article  PubMed  Google Scholar 

  63. McKnight, T. R. et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J. Neurosurg. 97, 794–802 (2002).

    Article  PubMed  Google Scholar 

  64. Ganslandt, O. et al. Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56 (Suppl. 2), 291–298 (2005).

    PubMed  Google Scholar 

  65. Di Costanzo, A. et al. Multiparametric 3 T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48, 622–631 (2006).

    Article  PubMed  Google Scholar 

  66. Witwer, B. P. et al. Diffusion tensor imaging of white matter tracts in patients with cerebral neoplasm. J. Neurosurg. 97, 568–575 (2002).

    Article  PubMed  Google Scholar 

  67. Clark, C. A., Barrick, T. R., Murphy, M. M. & Bell, B. A. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage 20, 1601–1608 (2003).

    Article  PubMed  Google Scholar 

  68. Nimsky, C. et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56, 130–137 (2005).

    Article  PubMed  Google Scholar 

  69. Bello, L. et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 39, 369–382 (2008).

    Article  PubMed  Google Scholar 

  70. Pujol, J. et al. Identification of the sensorimotor cortex with functional MRI: frequency and actual contribution in a neurosurgical context. J. Neuroimaging 18, 28–33 (2008).

    Article  PubMed  Google Scholar 

  71. Ojemann, G., Ojemann, J., Lettich, E. & Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Bizzi, A. et al. Presurgical functional MR Imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248, 579–589 (2008).

    Article  PubMed  Google Scholar 

  73. Krings, T. et al. Metabolic and electrophysiological validation of functional MRI. J. Neurol. Neurosurg. Psychiatry 71, 762–771 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ulmer, J. L. et al. Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am. J. Neuroradiol. 24, 213–217 (2003).

    PubMed  PubMed Central  Google Scholar 

  75. Roux, F. E. et al. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52, 1335–1345 (2003).

    Article  PubMed  Google Scholar 

  76. Rutten, G., Ramsey, N. F., van Rijen, P. C. & van Veelen, C. W. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 80, 421–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, C. C. et al. Assessment of functional MR imaging in neurosurgical planning. AJNR Am. J. Neuroradiol. 20, 1511–1519 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan, A. A. et al. Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for grade IV glioma. J. Neurosurg. 101, 467–475 (2004).

    Article  PubMed  Google Scholar 

  79. Jena, R. et al. Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high grade glioma. Clin. Oncol. (R. Coll. Radiol.) 17, 581–590 (2005).

    Article  CAS  Google Scholar 

  80. Maruyama, K. et al. Optic radiation tractography integrated into simulated treatment planning for gamma knife surgery. J. Neurosurg. 107, 721–726 (2007).

    Article  PubMed  Google Scholar 

  81. Grosu, A. L. et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 64–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Grosu, A. L. et al. Reirradiation of recurrent high grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 511–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. MacDonald, D., Cascino, T. L., Schold, S. C. Jr & Cairncross, J. G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 8, 1277–1280 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Shah, G. D. et al. Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro Oncol. 8, 38–46 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dempsey, M., Condon, B. R. & Hadley, D. M. Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am. J. Neuroradiol. 26, 770–776 (2005).

    PubMed  PubMed Central  Google Scholar 

  86. Brandsma, D., Stalpers, L., Taal, W., Sminia, P. & van den Bent, M. J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9, 453–461 (2008).

    Article  PubMed  Google Scholar 

  87. Mathews, M., Linskey, M. E., Hasso, A. N. & Fruehauf, J. P. The effect of bevacizumab (Avastin) on neuroimaging of brain metastases. Surg. Neurol. 70, 649–652 (2008).

    Article  PubMed  Google Scholar 

  88. Hsu, Y. et al. Blood oxygenation level-dependent MRI of cerebral gliomas during breath holding. J. Magn. Reson. Imaging 19, 160–167 (2004).

    Article  PubMed  Google Scholar 

  89. Cher, L. M. et al. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J. Nucl. Med. 47, 410–418 (2006).

    CAS  PubMed  Google Scholar 

  90. Ribom, D., Engler, H., Blomquist, E. & Smits, A. Potential significance of 11C-methionine PET as a marker for the radiosensitivity of low grade gliomas. Eur. J. Nucl. Med. Mol. Imaging 29, 632–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Moffat, B. A. et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl Acad. Sci. USA 102, 5524–5529 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cao, Y. et al. Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT [corrected]. Int. J. Radiat. Oncol. Biol. Phys. 64, 876–885 (2006).

    Article  PubMed  Google Scholar 

  93. Herholz, K., Coope, D. & Jackson, A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol. 6, 711–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Wald, L. L. et al. Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J. Neurosurg. 87, 525–534 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Graves, E. E. et al. Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am. J. Neuroradiol. 22, 613–624 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hollingworth, W. et al. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am. J. Neuroradiol. 27, 1404–1411 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zeng, Q. S. et al. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J. Neurooncol. 84, 63–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Sugahara, T. et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am. J. Neuroradiol. 21, 901–909 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ricci, P. E. et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am. J. Neuroradiol. 19, 407–413 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tsuyuguchi, N. et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery in malignant glioma. Ann. Nucl. Med. 18, 291–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Rachinger, W. et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57, 505–511 (2005).

    Article  PubMed  Google Scholar 

  102. Murphy, P. S. et al. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br. J. Cancer 90, 781–786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brock, C. S. et al. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br. J. Cancer 82, 608–615 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Charnley, N. et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 66, 331–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Galldiks, N. et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 33, 516–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, W. et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol. 25, 4714–4721 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. O'Connor, J. P., Jackson, A., Parker, G. J. & Jayson, G. C. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96, 189–195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cha, S. et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am. J. Neuroradiol. 21, 881–890 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Armitage, P., Schwindack, C., Bastin, M. E. & Whittle, I. R. Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn. Reson. Imaging 25, 303–310 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Adam D. Waldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldman, A., Jackson, A., Price, S. et al. Quantitative imaging biomarkers in neuro-oncology. Nat Rev Clin Oncol 6, 445–454 (2009). https://doi.org/10.1038/nrclinonc.2009.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing