Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Next generation oncology drug development: opportunities and challenges

Abstract

The optimal development of novel molecularly targeted agents for the treatment of cancer requires a re-evaluation of the current drug development paradigm. Selection of patients, optimal biologic dose versus maximum tolerated dose, definition of response and clinical benefit and trial designs that address these considerations are the focus of debate in the field of early cancer therapeutics. We present a review of the opportunities and challenges facing drug development in oncology through the phases of clinical development starting with first-in-human trials.

Key Points

  • The design of trials to test molecularly targeted agents need to be revised to achieve objectives such as optimal biologic dose, which might require incorporation of analytically validated assays into initial clinical studies

  • The design of early phase trials of molecularly targeted agents might need to have end points such as progression-free survival or time to progression as opposed to objective response rate

  • The design of subsequent phase II studies will need to take into consideration the biological expectations of the molecular target agent (tumor shrinkage versus nonshrinkage)

  • Phase III studies should be pursued only in the presence of sufficient signs of activity, and ideally only initiated after randomized phase II studies of adequate power

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of selection of patients in phase III studies.49
Figure 2: Bidimensional tumor measurements in a randomized discontinuation phase II clinical trial of 193 patients.35

Similar content being viewed by others

References

  1. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    Article  CAS  Google Scholar 

  2. Kummar, S. et al. Drug development in oncology: classical cytotoxics and molecularly targeted agents. Br. J. Clin. Pharmacol. 62, 15–26 (2006).

    Article  CAS  Google Scholar 

  3. Fox, E. et al. Clinical Trial Design for Target-Based Therapy. Oncologist 7, 401–409 (2002).

    Article  CAS  Google Scholar 

  4. [No authors listed] Steps to consider in pharmacodynamic assay development http://dtp.nci.nih.gov/docs/phase0/PharmacoDynamicAssayDeveloment.html (accessed 25 September (2008).

  5. Perez-Soler, R. et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J. Clin. Oncol. 22, 3238–3247 (2004).

    Article  CAS  Google Scholar 

  6. Ciardiello, F. et al. Antitumor effect and potentiation of cytotoxic drug activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063 (2000).

    CAS  PubMed  Google Scholar 

  7. Herbst, R. S. et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 23, 2544–2555 (2005).

    Article  CAS  Google Scholar 

  8. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  Google Scholar 

  9. Park, J. O. et al. Measuring response in solid tumors: comparison of RECIST and WHO response criteria. Jpn J. Clin. Oncol. 33, 533–537 (2003).

    Article  Google Scholar 

  10. Schuetze, S. M. et al. Selection of Response Criteria for Clinical Trials of Sarcoma Treatment. Oncologist 13 (Suppl. 2), 32–40 (2008).

    Article  Google Scholar 

  11. Millar, A. W. & Lynch, L. P. Rethinking clinical trials for cytostatic drugs. Nat. Rev. Cancer 3, 540–545 (2003).

    Article  CAS  Google Scholar 

  12. Weinstein, I. B. & Joe, A. K. Mechanisms of disease: oncogene addiction—-a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol. 3, 448–457 (2006).

    Article  CAS  Google Scholar 

  13. Sharma, S. V. et al. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10, 425–435 (2006).

    Article  CAS  Google Scholar 

  14. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA 290, 2149–2158 (2003).

    Article  CAS  Google Scholar 

  15. Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 21, 2237–2246 (2003).

    Article  CAS  Google Scholar 

  16. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  Google Scholar 

  17. Rugo, H. S. Bevacizumab in the treatment of breast cancer: rationale and current data. Oncologist 9 (Suppl. 1), 43–49 (2004).

    Article  CAS  Google Scholar 

  18. Cannistra, S. A. et al. Bevacizumab in patients with advanced platinum-resistant ovarian cancer [Abstract]. ASCO Meeting Abstracts 24, 5006 (2006).

    Google Scholar 

  19. Gambacorti-Passerini, C. et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol. Dis. 23, 380–394 (1997).

    Article  CAS  Google Scholar 

  20. Blanke, C. D. et al. Evaluation of the safety and efficacy of an oral molecularly-targeted therapy, STI571, in patients (Pts) with unresectable or metastatic gastrointestinal stromal tumors (GISTS) expressing C-KIT (CD117) [Abstract]. Proc. Am. Soc. Clin. Oncol. 20, 1 (2001).

    Google Scholar 

  21. Deininger, M. et al. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005).

    Article  CAS  Google Scholar 

  22. Deininger, M. W. & Druker, B. J. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev. 55, 401–423 (2003).

    Article  CAS  Google Scholar 

  23. Sequist, L. V. et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26, 2442–2449 (2008).

    Article  CAS  Google Scholar 

  24. Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    Article  CAS  Google Scholar 

  25. Chang, A. et al. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J. Thorac. Oncol. 1, 847–855 (2006).

    Article  Google Scholar 

  26. Clark, G. M. et al. Smoking history and epidermal growth factor receptor expression as predictors of survival benefit from erlotinib for patients with non-small-cell lung cancer in the National Cancer Institute of Canada Clinical Trials Group study BR.21. Clin. Lung Cancer 7, 389–394 (2006).

    Article  CAS  Google Scholar 

  27. Tamura, K. et al. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br. J. Cancer 98, 907–914 (2008).

    Article  CAS  Google Scholar 

  28. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  Google Scholar 

  29. Morgillo, F. et al. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin. Cancer Res. 13, 2795–2803 (2007).

    Article  CAS  Google Scholar 

  30. Dancey, J. E. & Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006).

    Article  CAS  Google Scholar 

  31. Heinrich, M. C. et al. Sunitinib (SU) response in imatinib-resistant (IM-R) GIST correlates with KIT and PDGFRA mutation status [Abstract]. ASCO Meeting Abstracts 24, 9502 (2006).

    Google Scholar 

  32. Xu, J. et al. Human multidrug transporter ABCG2, a target for sensitizing drug resistance in cancer chemotherapy. Curr. Med. Chem. 14, 689–701 (2007).

    Article  CAS  Google Scholar 

  33. Amery, W. & Dony, J. A clinical trial design avoiding undue placebo treatment. J. Clin. Pharmacol. 15, 674–679 (1975).

    Article  CAS  Google Scholar 

  34. Kopec, J. A. et al. Randomized discontinuation trials: utility and efficiency. J. Clin. Epidemiol. 46, 959–971 (1993).

    Article  CAS  Google Scholar 

  35. Ratain, M. J. et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 2505–2512 (2006).

    Article  CAS  Google Scholar 

  36. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  Google Scholar 

  37. Stadler, W. M. et al. Successful implementation of the randomized discontinuation trial design: an application to the study of the putative antiangiogenic agent carboxyaminoimidazole in renal cell carcinoma—CALGB 69901. J. Clin. Oncol. 23, 3726–3732 (2005).

    Article  CAS  Google Scholar 

  38. Freidlin, B. & Simon, R. Evaluation of randomized discontinuation design. J. Clin. Oncol. 23, 5094–5098 (2005).

    Article  Google Scholar 

  39. Freidlin, B. & Simon, R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin. Cancer Res. 11, 7872–7878 (2005).

    Article  CAS  Google Scholar 

  40. Kabbinavar, F. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 21, 60–65 (2003).

    Article  CAS  Google Scholar 

  41. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  Google Scholar 

  42. Kirkwood, J. M. et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. 14, 7–17 (1996).

    Article  CAS  Google Scholar 

  43. Cascinelli, N. et al. Effect of long-term adjuvant therapy with interferon alpha-2a in patients with regional node metastases from cutaneous melanoma: a randomised trial. Lancet 358, 866–869 (2001).

    Article  CAS  Google Scholar 

  44. Eggermont, A. M. et al. EORTC 18961: Post-operative adjuvant ganglioside GM2-KLH21 vaccination treatment vs observation in stage II (T3-T4N0M0) melanoma: 2nd interim analysis led to an early disclosure of the results [Abstract]. ASCO Meeting Abstracts 26, 9004 (2008).

    Google Scholar 

  45. Kummar, S. et al. Compressing drug development timelines in oncology using phase '0' trials. Nat. Rev. Cancer 7, 131–139 (2007).

    Article  CAS  Google Scholar 

  46. Murgo, A. J. et al. Designing phase 0 cancer clinical trials. Clin. Cancer Res. 14, 3675–3682 (2008).

    Article  CAS  Google Scholar 

  47. FDA Center for Drug Evaluation and Research (CDER). Guidance for Industry, Investigators, and Reviewers Exploratory IND Studies [2006] http://www.fda.gov/cder/guidance/7086fnl.htm (accessed 25 September 2008).

  48. Collins, J. M. Imaging and other biomarkers in early clinical studies: one step at a time or re-engineering drug development? J. Clin. Oncol. 23, 5417–5419 (2005).

    Article  Google Scholar 

  49. Pegram, M. D. et al. Targeted therapy: wave of the future. J. Clin. Oncol. 23, 1776–1781 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Giaccone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, M., Kummar, S. & Giaccone, G. Next generation oncology drug development: opportunities and challenges. Nat Rev Clin Oncol 6, 259–265 (2009). https://doi.org/10.1038/nrclinonc.2009.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing