Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic markers for decision making: what is preventing us from using markers?

Abstract

The advent of novel genomic technologies that enable the evaluation of genomic alterations on a genome-wide scale has significantly altered the field of genomic marker research in solid tumors. Researchers have moved away from the traditional model of identifying a particular genomic alteration and evaluating the association between this finding and a clinical outcome measure to a new approach involving the identification and measurement of multiple genomic markers simultaneously within clinical studies. This in turn has presented additional challenges in considering the use of genomic markers in oncology, such as clinical study design, reproducibility and interpretation and reporting of results. This Review will explore these challenges, focusing on microarray-based gene-expression profiling, and highlights some common failings in study design that have impacted on the use of putative genomic markers in the clinic. Despite these rapid technological advances there is still a paucity of genomic markers in routine clinical use at present. A rational and focused approach to the evaluation and validation of genomic markers is needed, whereby analytically validated markers are investigated in clinical studies that are adequately powered and have pre-defined patient populations and study endpoints. Furthermore, novel adaptive clinical trial designs, incorporating putative genomic markers into prospective clinical trials, will enable the evaluation of these markers in a rigorous and timely fashion. Such approaches have the potential to facilitate the implementation of such markers into routine clinical practice and consequently enable the rational and tailored use of cancer therapies for individual patients.

Key Points

  • Despite extensive research, relatively few genomic markers have been implemented into routine clinical use, often because of failings in clinical study design

  • The traditional 'single disease, single genomic marker' approach does not consider tumor heterogeneity and consequently single genomic markers are often found to be inadequate biomarkers in clinical studies

  • The introduction of new high-throughput genomic technologies has enabled the simultaneous measurement of multiple genomic alterations, and has revolutionized the field of genomic marker research in oncology

  • High-throughput technologies have presented additional challenges to considering the routine clinical use of putative genomic markers

  • Putative genomic markers should undergo extensive validation before they are implemented into routine clinical practice

  • Novel adaptive clinical trial designs that incorporate genomic markers into prospective studies will enable the evaluation of markers in a rigorous, timely fashion and facilitate their implementation into clinical practice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Marker enrichment' clinical trial design.
Figure 2: 'Planned analysis' clinical trial design.

Similar content being viewed by others

References

  1. Pusztai, L. et al. Clinical application of cDNA microarrays in oncology. Oncologist 8, 252–258 (2003).

    Article  CAS  Google Scholar 

  2. Harris, L. et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287–5312 (2007).

    Article  CAS  Google Scholar 

  3. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  Google Scholar 

  4. Workman, P. & de Bono, J. Targeted therapeutics for cancer treatment: major progress towards personalised molecular medicine. Curr. Opin. Pharmacol. 8, 359–362 (2008).

    Article  CAS  Google Scholar 

  5. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    Article  CAS  Google Scholar 

  6. Saltz, L. B. et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 22, 1201–1208 (2004).

    Article  CAS  Google Scholar 

  7. Chung, K. Y. et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. 23, 1803–1810 (2005).

    Article  CAS  Google Scholar 

  8. Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

    Article  CAS  Google Scholar 

  9. Lievre, A. et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374–379 (2008).

    Article  CAS  Google Scholar 

  10. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  Google Scholar 

  11. Spano, J. P. et al. Potential predictive markers of response to EGFR-targeted therapies in colorectal cancer. Crit. Rev. Oncol. Hematol. 66, 21–30 (2008).

    Article  Google Scholar 

  12. Churchill, G. A. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32, 490–495 (2002).

    Article  CAS  Google Scholar 

  13. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  14. Luzzi, V. I., Holtschlag, V. & Watson, M. A. Gene expression profiling of primary tumor cell populations using laser capture microdissection, RNA transcript amplification, and GeneChip microarrays. Methods Mol. Biol. 293, 187–207 (2005).

    CAS  PubMed  Google Scholar 

  15. Ramaswamy, S. & Golub, T. R. DNA microarrays in clinical oncology. J. Clin. Oncol. 20, 1932–1941 (2002).

    Article  CAS  Google Scholar 

  16. Mook, S. et al. Daily clinical practice of fresh tumour tissue freezing and gene expression profiling; logistics pilot study preceding the MINDACT trial. Eur. J. Cancer 45, 1201–1208 (2009).

    Article  CAS  Google Scholar 

  17. Masuda, N. et al. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res. 27, 4436–4443 (1999).

    Article  CAS  Google Scholar 

  18. Oberli, A. et al. Expression profiling with RNA from formalin-fixed, paraffin-embedded material. BMC Med. Genomics 1, 9 (2008).

    Article  Google Scholar 

  19. Lassmann, S. et al. A novel approach for reliable microarray analysis of microdissected tumor cells from formalin-fixed and paraffin-embedded colorectal cancer resection specimens. J. Mol. Med. 87, 211–224 (2009).

    Article  CAS  Google Scholar 

  20. Chen, J., Byrne, G. E. Jr & Lossos, I. S. Optimization of RNA extraction from formalin-fixed, paraffin-embedded lymphoid tissues. Diagn. Mol. Pathol. 16, 61–72 (2007).

    Article  Google Scholar 

  21. Bibikova, M. et al. Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. Am. J. Pathol. 165, 1799–1807 (2004).

    Article  CAS  Google Scholar 

  22. Horlings, H. M. et al. Gene expression profiling to identify the histogenetic origin of metastatic adenocarcinomas of unknown primary. J. Clin. Oncol. 26, 4435–4441 (2008).

    Article  CAS  Google Scholar 

  23. Farragher, S. M. et al. RNA expression analysis from formalin fixed paraffin embedded tissues. Histochem. Cell. Biol. 130, 435–445 (2008).

    Article  CAS  Google Scholar 

  24. Scicchitano, M. S. et al. Preliminary comparison of quantity, quality, and microarray performance of RNA extracted from formalin-fixed, paraffin-embedded, and unfixed frozen tissue samples. J. Histochem. Cytochem. 54, 1229–1237 (2006).

    Article  CAS  Google Scholar 

  25. Srivastava, P. K. et al. A cut-off based approach for gene expression analysis of formalin-fixed and paraffin-embedded tissue samples. Genomics 91, 522–529 (2008).

    Article  CAS  Google Scholar 

  26. Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008).

    Article  CAS  Google Scholar 

  27. Bertucci, F. et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23, 1377–1391 (2004).

    Article  CAS  Google Scholar 

  28. Croner, R. S. et al. Common denominator genes that distinguish colorectal carcinoma from normal mucosa. Int. J. Colorectal Dis. 20, 353–362 (2005).

    Article  Google Scholar 

  29. Friederichs, J. et al. Gene expression profiles of different clinical stages of colorectal carcinoma: toward a molecular genetic understanding of tumor progression. Int. J. Colorectal Dis. 20, 391–402 (2005).

    Article  Google Scholar 

  30. Groene, J. et al. Transcriptional census of 36 microdissected colorectal cancers yields a gene signature to distinguish UICC II and III. Int. J. Cancer 119, 1829–1836 (2006).

    Article  CAS  Google Scholar 

  31. Agrawal, D. et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J. Natl Cancer Inst. 94, 513–521 (2002).

    Article  CAS  Google Scholar 

  32. Ki, D. H. et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int. J. Cancer 121, 2005–2012 (2007).

    Article  CAS  Google Scholar 

  33. Koh, K. H. et al. Differential gene expression profiles of metastases in paired primary and metastatic colorectal carcinomas. Oncology 75, 92–101 (2008).

    Article  CAS  Google Scholar 

  34. Koehler, A. et al. Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. J. Pathol. 204, 65–74 (2004).

    Article  CAS  Google Scholar 

  35. Matsuyama, R. et al. Predicting 5-fluorouracil chemosensitivity of liver metastases from colorectal cancer using primary tumor specimens: three-gene expression model predicts clinical response. Int. J. Cancer 119, 406–413 (2006).

    Article  CAS  Google Scholar 

  36. Del Rio, M. et al. Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J. Clin. Oncol. 25, 773–780 (2007).

    Article  CAS  Google Scholar 

  37. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  38. Simon, R. et al. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst. 95, 14–18 (2003).

    Article  CAS  Google Scholar 

  39. Quackenbush, J. Microarray analysis and tumor classification. N. Engl. J. Med. 354, 2463–2472 (2006).

    Article  CAS  Google Scholar 

  40. Eschrich, S. & Yeatman, T. J. DNA microarrays and data analysis: an overview. Surgery 136, 500–503 (2004).

    Article  Google Scholar 

  41. Dupuy, A. & Simon, R. M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J. Natl Cancer Inst. 99, 147–157 (2007).

    Article  Google Scholar 

  42. Dobbin, K. K., Zhao, Y. & Simon, R. M. How large a training set is needed to develop a classifier for microarray data? Clin. Cancer Res. 14, 108–114 (2008).

    Article  CAS  Google Scholar 

  43. National Institutes of Health. Sample size calculation [online] (2009).

  44. Wang, Y. et al. Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. J. Clin. Oncol. 22, 1564–1571 (2004).

    Article  CAS  Google Scholar 

  45. Hess, K. R. et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J. Clin. Oncol. 24, 4236–4244 (2006).

    Article  CAS  Google Scholar 

  46. Pusztai, L. & Hess, K. R. Clinical trial design for microarray predictive marker discovery and assessment. Ann. Oncol. 15, 1731–1737 (2004).

    Article  CAS  Google Scholar 

  47. Taylor, J. M., Ankerst, D. P. & Andridge, R. R. Validation of biomarker-based risk prediction models. Clin. Cancer Res. 14, 5977–5983 (2008).

    Article  Google Scholar 

  48. Simon, R. & Wang, S. J. Use of genomic signatures in therapeutics development in oncology and other diseases. Pharmacogenomics J. 6, 166–173 (2006).

    Article  CAS  Google Scholar 

  49. George, S. L. Statistical issues in translational cancer research. Clin. Cancer Res. 14, 5954–5958 (2008).

    Article  Google Scholar 

  50. Dobbin, K. K. et al. Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Clin. Cancer Res. 11, 565–572 (2005).

    CAS  PubMed  Google Scholar 

  51. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  52. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  53. Moher, D., Schulz, K. F. & Altman, D. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285, 1987–1991 (2001).

    Article  CAS  Google Scholar 

  54. Canales, R. D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115–1122 (2006).

    Article  CAS  Google Scholar 

  55. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161 (2006).

    Article  CAS  Google Scholar 

  56. Shi, L. et al. Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential. Curr. Opin. Biotechnol. 19, 10–18 (2008).

    Article  CAS  Google Scholar 

  57. FDA US Food and Drug Administration. Critical Path Initiative [online] (2009).

  58. FDA US Food and Drug Administration. Guidance for Industry: Pharmacogenomic Data Submissions [online] (2009).

  59. Geyer, F. C. & Reis-Filho, J. S. Microarray-based gene expression profiling as a clinical tool for breast cancer management: are we there yet? Int. J. Surg. Pathol. 17, 285–302 (2008).

    Article  Google Scholar 

  60. Bueno-de-Mesquita, J. M. et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol. 8, 1079–1087 (2007).

    Article  CAS  Google Scholar 

  61. Simon, R. The use of genomics in clinical trial design. Clin. Cancer Res. 14, 5984–5993 (2008).

    Article  Google Scholar 

  62. Freidlin, B. & Simon, R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin. Cancer Res. 11, 7872–7878 (2005).

    Article  CAS  Google Scholar 

  63. Jiang, W., Freidlin, B. & Simon, R. Biomarker-adaptive threshold design: a procedure for evaluating treatment with possible biomarker-defined subset effect. J. Natl Cancer Inst. 99, 1036–1043 (2007).

    Article  Google Scholar 

  64. Simon, R. Challenges of microarray data and the evaluation of gene expression profile signatures. Cancer Invest. 26, 327–332 (2008).

    Article  CAS  Google Scholar 

  65. Ransohoff, D. F. How to improve reliability and efficiency of research about molecular markers: roles of phases, guidelines, and study design. J. Clin. Epidemiol. 60, 1205–1219 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Johnston.

Ethics declarations

Competing interests

Patrick G. Johnston declares he is a stock-holder for products made by Almac, Fusion Antibodies and GlaxoSmithKline. Vicky M. Coyle declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coyle, V., Johnston, P. Genomic markers for decision making: what is preventing us from using markers?. Nat Rev Clin Oncol 7, 90–97 (2010). https://doi.org/10.1038/nrclinonc.2009.214

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.214

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing