Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics

Abstract

The 2008 WHO classification system for hematological malignancies is comprehensive and includes histology and genetic information. Myeloid neoplasms are now classified into five categories: acute myeloid leukemia, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN, and myeloid and/or lymphoid malignancies associated with eosinophilia and PDGFR or FGFR1 rearrangements. MPN are subclassified into eight separate entities: chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, primary myelofibrosis, systemic mastocytosis, chronic eosinophilic leukemia not otherwise specified, chronic neutrophilic leukemia, and unclassifiable MPN. The diagnosis of chronic myelogenous leukemia requires the presence of BCR-ABL1, while its absence is required for all other MPN. Additional MPN-associated molecular markers include mutations of JAK2, MPL, TET2 and KIT. JAK2 V617F is found in most patients with polycythemia vera, essential thrombocythemia, or primary myelofibrosis and is, therefore, useful as a clonal marker in those settings. The diagnostic utility of MPL and TET2 mutations is limited by low mutational frequency. In systemic mastocytosis, presence of KIT D816V is expected but not essential for diagnosis. Chronic eosinophilic leukemia not otherwise specified should be distinguished from both PDGFR-rearranged or FGFR1-rearranged neoplasms and hypereosinophilic syndrome. We discuss histologic, cytogenetic and molecular changes in MPN and illustrate their integration into practical diagnostic algorithms.

Key Points

  • The 2008 WHO classification system for hematologic malignancies includes new genetic information to complement histology for both disease classification and diagnosis

  • The presence of BCR-ABL in a chronic myeloid neoplasm is pathognomonic for chronic myelogenous leukemia and its absence is essential for the diagnosis of other myeloproliferative neoplasms

  • Diagnosis of polycythemia vera is unlikely if JAK2 exons 12 and 14 lack mutations, and excluded when exon 14 mutations are absent and serum erythropoietin levels are normal or elevated

  • Bone marrow histology is often helpful to distinguish clonal from reactive myeloproliferation and essential thrombocythemia from prefibrotic primary myelofibrosis

  • Diagnostic evaluation of nonreactive eosinophilia should always include screening for FIP1L1-PDGFRA and PDGFRB rearrangements; patients with these mutations can be treated with imatinib mesylate

  • The presence of a KIT mutation is expected in systemic mastocytosis but is not required for its diagnosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrographs of a bone marrow biopsy sample from a 52-year-old woman who presented with a platelet count of 790 × 109/l.
Figure 2: Photomicrographs of bone marrow biopsy samples from a 35-year-old man who initially presented with a platelet count of 900 × 109/l.
Figure 3
Figure 4: A genetic and histology-based diagnostic algorithm for CML, polycythemia vera, essential thrombocythemia and primary myelofibrosis.
Figure 5: A contemporary approach to diagnosis of secondary polycythemia.
Figure 6: Current diagnostic approach to chronic myeloid neoplasms associated with eosinophilia, monocytosis or bone marrow mastocytosis.

Similar content being viewed by others

References

  1. Dameshek, W. Some speculations on the myeloproliferative syndromes. Blood 6, 372–375 (1951).

    CAS  PubMed  Google Scholar 

  2. Vardiman, J. W. et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114, 937–951 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Tefferi, A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J. Cell. Mol. Med. 13, 215–237 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Cross, N. C. et al. BCR-ABL1-positive CML and BCR-ABL1-negative chronic myeloproliferative disorders: some common and contrasting features. Leukemia 22, 1975–1989 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Skoda, R. The genetic basis of myeloproliferative disorders. Am. Soc. Hematol. Educ Program 1–10 (2007).

  6. Tefferi, A. et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23, 905–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tefferi, A. et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KIT D816V and FIP1L1-PDGFRA correlates. Leukemia 23, 900–904 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tefferi, A. et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23, 1343–1345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  10. Nowell, P. C. & Hungerford, D. A. A minute chromosome in human granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  11. Santana-Davila, R. et al. Chromosome 5q deletion: specific diagnoses and cytogenetic details among 358 consecutive cases from a single institution. Leukoc. Res. 32, 407–411 (2008).

    Article  CAS  Google Scholar 

  12. Tefferi, A. et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 110, 1092–1097 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Metcalfe, D. D. Mast cells and mastocytosis. Blood 112, 946–956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gotlib, J. & Cools, J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22, 1999–2010 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Vardiman, J. W. et al. in WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 4th edn (eds Swerdlow, S. H. et al.) 18–30 (WHO, Geneva, 2008).

    Google Scholar 

  16. Vardiman, J. W., Brunning, R. D. & Harris, N. L. in Pathology and Genetics: Tumors of Hematopoietic and Lymphoid Tissues: World Health Organization Classification of Tumors (eds Jaffe, E. S. et al.) 17–44 (International Agency for Research on Cancer, Lyon, 2001).

    Google Scholar 

  17. Atallah, E. et al. Prognostic interaction between thrombocytosis and JAK2 V617F mutation in the WHO subcategories of myelodysplastic/myeloproliferative disease-unclassifiable and refractory anemia with ringed sideroblasts and marked thrombocytosis. Leukemia 22, 1295–1298 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Thiele, J. & Kvasnicka, H. M. Hematopathologic findings in chronic idiopathic myelofibrosis. Semin. Oncol. 32, 380–394 (2005).

    Article  PubMed  Google Scholar 

  19. Thiele, J. & Kvasnicka, H. M. A critical reappraisal of the WHO classification of the chronic myeloproliferative disorders. Leuk. Lymphoma 47, 381–396 (2006).

    Article  PubMed  Google Scholar 

  20. So, C. C. et al. Can morphological assessment limit the use of specific genetic testing to exclude chronic myeloid leukaemia? Br. J. Hematol. 137, 377 (2007).

    Article  Google Scholar 

  21. Stoll, D. B. et al. Clinical presentation and natural history of patients with essential thrombocythemia and the Philadelphia chromosome. Am. J. Hematol. 27, 77–83 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Buhr, T., Georgii, A. & Choritz, H. Myelofibrosis in chronic myeloproliferative disorders. Incidence among subtypes according to the Hannover Classification. Pathol. Res. Pract. 189, 121–132 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Hussein, K. et al. Karyotype complements the International Prognostic Scoring System for primary myelofibrosis. Eur. J. Hematol. 82, 255–259 (2009).

    Article  Google Scholar 

  24. Gangat, N. et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2 V617F allele burden correlates. Eur. J. Hematol. 80, 197–200 (2008).

    Article  Google Scholar 

  25. Gangat, N. et al. Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance. Eur. J. Hematol. 83, 17–21 (2009).

    Article  CAS  Google Scholar 

  26. Elliott, M. A. et al. WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature. Leukemia 19, 313–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lim, K. H. et al. Systemic mastocytosis in 342 consecutive adults. Blood 113, 5727–5736 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hussein, K., Van Dyke, D. L. & Tefferi, A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Eur. J. Hematol. 82, 329–338 (2009).

    Article  Google Scholar 

  29. Bacher, U. et al. Distribution of cytogenetic abnormalities in myelodysplastic syndromes, Philadelphia negative myeloproliferative neoplasms, and the overlap MDS/MPN category. Ann. Hematol. doi:10.1007/s00277-009-0745–3.

  30. Nowell, P. C. & Hungerford, D. A. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst. 25, 85–109 (1960).

    CAS  PubMed  Google Scholar 

  31. Rowley, J. D. A new consistent chromosomal abnormalcy in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining [letter]. Nature 243, 290–293 (1973).

    Article  CAS  PubMed  Google Scholar 

  32. de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982).

    Article  CAS  PubMed  Google Scholar 

  33. Groffen, J. et al. Philadelphia chromosomal breakpoints are clustered within a limited region, BCR, on chromosome 22. Cell 36, 93–99 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Heisterkamp, N., Stam, K., Groffen, J., de Klein, A. & Grosveld, G. Structural organization of the BCR gene and its role in the Ph' translocation. Nature 315, 758–761 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210Bcr/Abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Levine, R. L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature 43, 1144–1148 (2005).

    Article  Google Scholar 

  39. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 36, 1054–1061 (2005).

    Article  Google Scholar 

  41. Steensma, D. P. et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 106, 1207–1209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones, A. V. et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106, 2162–2168 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Renneville, A. et al. High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia 20, 2067–2070 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Schmitt-Graeff, A. H. et al. JAK2V617F mutation status identifies subtypes of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Hematologica 93, 34–40 (2008).

    Article  CAS  Google Scholar 

  45. Wernig, G. et al. Expression of JAK2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107, 4274–4281 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tiedt, R. et al. Ratio of mutant Jak2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111, 3931–3940 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kralovics, R. et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 108, 1377–1380 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Pardanani, A. et al. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes. Stem Cells 25, 2358–2362 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Pardanani, A., Fridley, B. L., Lasho, T. L., Gilliland, D. G. & Tefferi, A. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 111, 2785–2789 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 41, 446–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat. Genet. 41, 455–459 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 41, 450–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Scott, L. M. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356, 459–468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pardanani, A., Lasho, T. L., Finke, C., Hanson, C. A. & Tefferi, A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 21, 1960–1963 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Pietra, D. et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 111, 1686–1689 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Pikman, Y. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 3, e270 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pardanani, A. D. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108, 3472–3476 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Schnittger, S. et al. Detection of three different MPLW515 mutations in 10.1% of all JAK2 V617 unmutated ET and 9.3% of all JAK2 V617F unmutated OMF: a study of 387 patients. Blood (ASH Annual Meeting Abstracts) 110, 2546 (2007).

    Google Scholar 

  59. Vannucchi, A. M. et al. The clinical phenotype of patients with essential thrombocythemia harboring MPL 515W>L/K mutation. Blood (ASH Annual Meeting Abstracts) 110, 678 (2007).

    Google Scholar 

  60. Guglielmelli, P. et al. Anemia characterises patients with myelofibrosis harboring MPL mutation. Br. J. Haematol. 137, 244–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Beer, P. A. et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 112, 141–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Chaligné, R. et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 110, 3735–3743 (2007).

    Article  PubMed  Google Scholar 

  63. Pardanani, A., Lasho, T. L., Finke, C., Markovic, S. N. & Tefferi, A. Demonstration of MPLW515K, but not JAK2V617F, in in vitro expanded CD4+ T lymphocytes. Leukemia 21, 2206–2207 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Lasho, T. L. et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br. J. Haematol. 135, 683–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Beer, P. A. et al. Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. Br. J. Haematol. 144, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Furitsu, T. et al. Identification of mutations in the coding sequence of the proto-oncogene c-KIT in a human mast cell leukemia cell line causing ligand-independent activation of c-KIT product. J. Clin. Invest. 92, 1736–1744 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Montero, A. C. et al. KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood 108, 2366–2372 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Zappulla, J. P. et al. Mastocytosis in mice expressing human KIT receptor with the activating Asp816Val mutation. J. Exp. Med. 202, 1635–1641 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferrao, P. T., Gonda, T. J. & Ashman, L. K. Constitutively active mutant D816VKit induces megakaryocyte and mast cell differentiation of early hemopoietic cells from murine fetal liver. Leukoc. Res. 27, 547–555 (2003).

    Article  CAS  Google Scholar 

  70. Delhommeau, F. et al. TET2 is a novel tumor suppressor gene inactivated in myeloproliferative neoplasms: identification of a pre-JAK2 V617F event. Blood (ASH Annual Meeting Abstracts) 112, 3 (2008).

    Google Scholar 

  71. Patnaik, M. M. & Tefferi, A. The complete evaluation of erythrocytosis: congenital and acquired. Leukemia 23, 834–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Messinezy, M. et al. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br. J. Haematol. 117, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Mossuz, P. et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Hematologica 89, 1194–1198 (2004).

    CAS  Google Scholar 

  74. Tefferi, A. & Vardiman, J. W. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22, 14–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Kittur, J. et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer 109, 2279–2284 (2007).

    Article  PubMed  Google Scholar 

  76. Blickstein, D. et al. BCR-ABL transcripts in bone marrow aspirates of Philadelphia-negative essential thrombocytopenia patients: clinical presentation. Blood 90, 2768–2771 (1997).

    CAS  PubMed  Google Scholar 

  77. Tefferi, A., Patnaik, M. M. & Pardanani, A. Eosinophilia: secondary, clonal and idiopathic. Br. J. Haematol. 133, 468–492 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayalew Tefferi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tefferi, A., Skoda, R. & Vardiman, J. Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol 6, 627–637 (2009). https://doi.org/10.1038/nrclinonc.2009.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing