Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proteostasis in cardiac health and disease

Key Points

  • Gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control underlie development of common cardiac diseases

  • Loss of protein patency can be triggered by genetic mutations and environmentally-induced 'wear and tear'

  • Failure of the protein quality control system might relate to the induction of cardiac senescence

  • Targeting protein quality control to maintain cardiac proteostasis is a novel therapeutic option in cardiac diseases

  • Several marketed drugs that target proteostasis have already been explored in the clinical setting for other indications

Abstract

The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin–proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of the protein quality control system.
Figure 2: Cardiac cytoskeletal proteins involved in cardiomyocyte contraction.
Figure 3: Loss of protein quality control in the myocardium of patients with cardiac disease.
Figure 4: Impairment of protein quality control and derailment of proteostasis in atrial fibrillation.
Figure 5: Interaction between protein quality control and senescence in the progressive loss of cardiomyocytes in ageing and disease.

References

  1. Shioi, T. & Inuzuka, Y. Aging as a substrate of heart failure. J. Cardiol. 60, 423–428 (2012).

    PubMed  Google Scholar 

  2. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, a004440 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  5. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    CAS  PubMed  Google Scholar 

  6. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kampinga, H. H. & Bergink, S. Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol. 15, 748–759 (2016).

    CAS  PubMed  Google Scholar 

  8. Diaz-Villanueva, J. F., Diaz-Molina, R. & Garcia-Gonzalez, V. Protein folding and mechanisms of proteostasis. Int. J. Mol. Sci. 16, 17193–17230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    PubMed  Google Scholar 

  10. Vilchez, D., Saez, I. & Dillin, A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659 (2014).

    CAS  PubMed  Google Scholar 

  11. McLendon, P. M. & Robbins, J. Proteotoxicity and cardiac dysfunction. Circ. Res. 116, 1863–1882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gavilan, M. P. et al. Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 8, 654–665 (2009).

    CAS  PubMed  Google Scholar 

  13. Riva, L. et al. Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J. Huntingtons Dis. 1, 33–45 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Sciarretta, S., Boppana, V. S., Umapathi, M., Frati, G. & Sadoshima, J. Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc. Diagn. Ther. 5, 394–402 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosello-Lleti, E. et al. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy. PLoS ONE 9, e112971 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Ortega, A. et al. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS ONE 9, e107635 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Castillero, E. et al. Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 309, H459–H470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai, D. F. et al. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc. Res. 93, 79–88 (2012).

    CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. Reduced endoplasmic reticulum stress might alter the course of heart failure via caspase-12 and JNK pathways. Can. J. Cardiol. 30, 368–375 (2014).

    PubMed  Google Scholar 

  21. Kalfalah, F. et al. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors. Aging (Albany NY) 7, 110–122 (2015).

    CAS  Google Scholar 

  22. Waldera-Lupa, D. M. et al. Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts. Aging (Albany NY) 6, 856–878 (2014).

    CAS  Google Scholar 

  23. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    CAS  PubMed  Google Scholar 

  24. Franco, R. & Cedazo-Minguez, A. Successful therapies for Alzheimer's disease: why so many in animal models and none in humans? Front. Pharmacol. 5, 146 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Walther, D. M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brundel, B. J. J. M. et al. Induction of heat-shock response protects the heart against atrial fibrillation. Circ. Res. 99, 1394–1402 (2006).

    CAS  PubMed  Google Scholar 

  27. Wiersma, M., Henning, R. H. & Brundel, B. J. Derailed proteostasis as a determinant of cardiac aging. Can J. Cardiol. 32, 1166.e11–1166.e20 (2016).

    Google Scholar 

  28. Neef, D. W. et al. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep. 9, 955–966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009).

    CAS  PubMed  Google Scholar 

  30. Vos, M. J., Hageman, J., Carra, S. & Kampinga, H. H. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47, 7001–7011 (2008).

    CAS  PubMed  Google Scholar 

  31. Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579–592 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morimoto, R. I. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 76, 91–99 (2011).

    CAS  PubMed  Google Scholar 

  33. Hageman, J., van Waarde, M. A., Zylicz, A., Walerych, D. & Kampinga, H. H. The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem. J. 435, 127–142 (2011).

    CAS  PubMed  Google Scholar 

  34. Lanneau, D., de Thonel, A., Maurel, S., Didelot, C. & Garrido, C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1, 53–60 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Langer, T. et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689 (1992).

    CAS  PubMed  Google Scholar 

  36. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    CAS  PubMed  Google Scholar 

  37. Kampinga, H. H. & Garrido, C. HSPBs: small proteins with big implications in human disease. Int. J. Biochem. Cell Biol. 44, 1706–1710 (2012).

    CAS  PubMed  Google Scholar 

  38. Golenhofen, N., Perng, M. D., Quinlan, R. A. & Drenckhahn, D. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem. Cell Biol. 122, 415–425 (2004).

    CAS  PubMed  Google Scholar 

  39. Brundel, B. J. J. M. et al. Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. J. Mol. Cell. Cardiol. 41, 555–562 (2006).

    CAS  PubMed  Google Scholar 

  40. Morimoto, R. I. & Cuervo, A. M. Proteostasis and the aging proteome in health and disease. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S33–S38 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Powers, E. T. & Balch, W. E. Diversity in the origins of proteostasis networks — a driver for protein function in evolution. Nat. Rev. Mol. Cell Biol. 14, 237–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Karve, T. M. & Cheema, A. K. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J. Amino Acids 2011, 207691 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2, 379–384 (2000).

    CAS  PubMed  Google Scholar 

  44. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  45. Wang, X. & Terpstra, E. J. Ubiquitin receptors and protein quality control. J. Mol. Cell. Cardiol. 55, 73–84 (2013).

    CAS  PubMed  Google Scholar 

  46. Ravikumar, B. et al. Mammalian macroautophagy at a glance. J. Cell Sci. 122, 1707–1711 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hein, S., Kostin, S., Heling, A., Maeno, Y. & Schaper, J. The role of the cytoskeleton in heart failure. Cardiovasc. Res. 45, 273–278 (2000).

    CAS  PubMed  Google Scholar 

  48. Knoll, R. & Buyandelger, B. Z-disc transcriptional coupling, sarcomeroptosis and mechanoptosis. Cell Biochem. Biophys. 66, 65–71 (2013).

    PubMed  Google Scholar 

  49. Knoll, R., Buyandelger, B. & Lab, M. The sarcomeric Z-disc and Z-discopathies. J. Biomed. Biotechnol. 2011, 569628 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    CAS  PubMed  Google Scholar 

  51. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Friedman, J. R., Webster, B. M., Mastronarde, D. N., Verhey, K. J. & Voeltz, G. K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363–375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lemon, D. D. et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J. Mol. Cell. Cardiol. 51, 41–50 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, D. et al. Activation of histone deacetylase-6 (HDAC6) induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 129, 346–358 (2014).

    CAS  PubMed  Google Scholar 

  56. Lehmann, L. H., Worst, B. C., Stanmore, D. A. & Backs, J. Histone deacetylase signaling in cardioprotection. Cell. Mol. Life Sci. 71, 1673–1690 (2014).

    CAS  PubMed  Google Scholar 

  57. David, D. C. et al. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol. 8, e1000450 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Kirstein-Miles, J., Scior, A., Deuerling, E. & Morimoto, R. I. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 32, 1451–1468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tavernarakis, N. et al. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol. 18, 228–235 (2008).

    CAS  PubMed  Google Scholar 

  60. Dai, Q. et al. The left ventricle proteome differentiates middle-aged and old left ventricles in mice. J. Proteome Res. 7, 756–765 (2008).

    CAS  PubMed  Google Scholar 

  61. Chakravarti, B. et al. Proteome profiling of aging in mouse models: differential expression of proteins involved in metabolism, transport, and stress response in kidney. Proteomics 9, 580–597 (2009).

    CAS  PubMed  Google Scholar 

  62. Chakravarti, B. et al. Proteomic profiling of aging in the mouse heart: altered expression of mitochondrial proteins. Arch. Biochem. Biophys. 474, 22–31 (2008).

    CAS  PubMed  Google Scholar 

  63. Liang, V. et al. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell. Mol. Life Sci. 71, 3339–3361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Naidoo, N., Ferber, M., Master, M., Zhu, Y. & Pack, A. I. Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J. Neurosci. 28, 6539–6548 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown, M. K. & Naidoo, N. The endoplasmic reticulum stress response in aging and age-related diseases. Front. Physiol. 3, 263 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Wadhwa, R. et al. Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. J. Biol. Chem. 285, 3833–3839 (2010).

    CAS  PubMed  Google Scholar 

  68. Morrow, G., Samson, M., Michaud, S. & Tanguay, R. M. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J. 18, 598–599 (2004).

    CAS  PubMed  Google Scholar 

  69. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003).

    CAS  PubMed  Google Scholar 

  70. Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hercus, M. J., Loeschcke, V. & Rattan, S. I. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4, 149–156 (2003).

    CAS  PubMed  Google Scholar 

  72. Volovik, Y. et al. Temporal requirements of heat shock factor-1 for longevity assurance. Aging Cell 11, 491–499 (2012).

    CAS  PubMed  Google Scholar 

  73. Zhang, H. et al. ROS regulation of microdomain Ca2+ signalling at the dyads. Cardiovasc. Res. 98, 248–258 (2013).

    CAS  PubMed  Google Scholar 

  74. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, e417 (2006).

    PubMed  PubMed Central  Google Scholar 

  75. Willis, M. S. & Patterson, C. Proteotoxicity and cardiac dysfunction. N. Engl. J. Med. 368, 1755 (2013).

    CAS  PubMed  Google Scholar 

  76. Zhang, D., Hu, X., Henning, R. H. & Brundel, B. J. Keeping up the balance: role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation. Cardiovasc. Res. 109, 519–526 (2016).

    CAS  PubMed  Google Scholar 

  77. Meijering, R., Zhang, D., Hoogstra-Berends, F., Henning, R. & Brundel, B. Loss of proteostatic control as a substrate for atrial fibrillation; a novel target for upstream therapy by heat shock proteins. Front. Physiol. 3, 36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).

    CAS  PubMed  Google Scholar 

  79. Mukherjee, A. & Soto, C. Prion-like protein aggregates and type 2 diabetes. Cold Spring Harb. Perspect. Med. 7, a024315 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Kappe, G. et al. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8, 53–61 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Carra, S. et al. Alteration of protein folding and degradation in motor neuron diseases: implications and protective functions of small heat shock proteins. Prog. Neurobiol. 97, 83–100 (2012).

    CAS  PubMed  Google Scholar 

  82. Brundel, B. J. J. M. et al. Heat shock proteins as molecular targets for intervention in atrial fibrillation. Cardiovasc. Res. 78, 422–428 (2008).

    CAS  PubMed  Google Scholar 

  83. Bennardini, F., Wrzosek, A. & Chiesi, M. Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ. Res. 71, 288–294 (1992).

    CAS  PubMed  Google Scholar 

  84. Clark, A. R., Lubsen, N. H. & Slingsby, C. sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int. J. Biochem. Cell Biol. 44, 1687–1697 (2012).

    CAS  PubMed  Google Scholar 

  85. Christians, E. S., Ishiwata, T. & Benjamin, I. J. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int. J. Biochem. Cell Biol. 44, 1632–1645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, J., Tang, M., Mestril, R. & Wang, X. Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes. J. Mol. Cell. Cardiol. 40, 451–454 (2006).

    CAS  PubMed  Google Scholar 

  87. Vos, M. J. et al. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum. Mol. Genet. 19, 4677–4693 (2010).

    CAS  PubMed  Google Scholar 

  88. Ke, L. et al. HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced HL-1 atrial myocytes. PLoS ONE 6, e20395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hershberger, R. E., Hedges, D. J. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013).

    CAS  PubMed  Google Scholar 

  90. Vicart, P. et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 20, 92–95 (1998).

    CAS  PubMed  Google Scholar 

  91. Selcen, D. & Engel, A. G. Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Ann. Neurol. 54, 804–810 (2003).

    CAS  PubMed  Google Scholar 

  92. Takayama, S., Xie, Z. & Reed, J. C. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274, 781–786 (1999).

    CAS  PubMed  Google Scholar 

  93. Carra, S., Seguin, S. J., Lambert, H. & Landry, J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J. Biol. Chem. 283, 1437–1444 (2008).

    CAS  PubMed  Google Scholar 

  94. Gamerdinger, M. et al. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28, 889–901 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hishiya, A., Salman, M. N., Carra, S., Kampinga, H. H. & Takayama, S. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PLoS ONE 6, e16828 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie, K. et al. Modulating autophagy improves cardiac function in a rat model of early-stage dilated cardiomyopathy. Cardiology 125, 60–68 (2013).

    PubMed  Google Scholar 

  97. Ramos, F. J., Kaeberlein, M. & Kennedy, B. K. Elevated MTORC1 signaling and impaired autophagy. Autophagy 9, 108–109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Odgerel, Z. et al. Inheritance patterns and phenotypic features of myofibrillar myopathy associated with a BAG3 mutation. Neuromuscul. Disord. 20, 438–442 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Homma, S. et al. BAG3 deficiency results in fulminant myopathy and early lethality. Am. J. Pathol. 169, 761–773 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, J. et al. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J. Clin. Invest. 121, 3689–3700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128, 365–376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bhuiyan, M. S. et al. Enhanced autophagy ameliorates cardiac proteinopathy. J. Clin. Invest. 123, 5284–5297 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).

    PubMed  Google Scholar 

  104. Wang, X. et al. AlphaB-crystallin modulates protein aggregation of abnormal desmin. Circ. Res. 93, 998–1005 (2003).

    CAS  PubMed  Google Scholar 

  105. Venetucci, L., Denegri, M., Napolitano, C. & Priori, S. G. Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat. Rev. Cardiol. 9, 561–575 (2012).

    CAS  PubMed  Google Scholar 

  106. Bezzina, C. R., Lahrouchi, N. & Priori, S. G. Genetics of sudden cardiac death. Circ. Res. 116, 1919–1936 (2015).

    CAS  PubMed  Google Scholar 

  107. Li, K. et al. Tetrameric assembly of K+ channels requires ER-located chaperone proteins. Mol. Cell 65, 52–65 (2017).

    CAS  PubMed  Google Scholar 

  108. Falk, R. H., Comenzo, R. L. & Skinner, M. The systemic amyloidoses. N. Engl. J. Med. 337, 898–909 (1997).

    CAS  PubMed  Google Scholar 

  109. Wechalekar, A. D., Gillmore, J. D. & Hawkins, P. N. Systemic amyloidosis. Lancet 387, 2641–2654 (2016).

    CAS  PubMed  Google Scholar 

  110. Kunst, C. B., Messer, L., Gordon, J., Haines, J. & Patterson, D. Genetic mapping of a mouse modifier gene that can prevent ALS onset. Genomics 70, 181–189 (2000).

    CAS  PubMed  Google Scholar 

  111. Lloret, A. et al. Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington's disease knock-in mice. Hum. Mol. Genet. 15, 2015–2024 (2006).

    CAS  PubMed  Google Scholar 

  112. Brehme, M. & Voisine, C. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis. Model. Mech. 9, 823–838 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sin, O., Michels, H. & Nollen, E. A. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochim. Biophys. Acta 1842, 1951–1959 (2014).

    CAS  PubMed  Google Scholar 

  114. Lanska, D. J., Lanska, M. J., Lavine, L. & Schoenberg, B. S. Conditions associated with Huntington's disease at death. A case-control study. Arch. Neurol. 45, 878–880 (1988).

    CAS  PubMed  Google Scholar 

  115. van der Burg, J. M., Bjorkqvist, M. & Brundin, P. Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurol. 8, 765–774 (2009).

    PubMed  Google Scholar 

  116. Hoogeveen, A. T. et al. Characterization and localization of the Huntington disease gene product. Hum. Mol. Genet. 2, 2069–2073 (1993).

    CAS  PubMed  Google Scholar 

  117. Melkani, G. C. et al. Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet. 9, e1004024 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. Mihm, M. J. et al. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis. 25, 297–308 (2007).

    CAS  PubMed  Google Scholar 

  119. Schroeder, A. M. et al. Cardiac dysfunction in the BACHD mouse model of Huntington's disease. PLoS ONE 11, e0147269 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Pattison, J. S. et al. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 117, 2743–2751 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kobal, J., Meglic, B., Mesec, A. & Peterlin, B. Early sympathetic hyperactivity in Huntington's disease. Eur. J. Neurol. 11, 842–848 (2004).

    CAS  PubMed  Google Scholar 

  122. Anyanwu, A. C., Banner, N. R., Radley-Smith, R., Khaghani, A. & Yacoub, M. H. Long-term results of cardiac transplantation from live donors: the domino heart transplant. J. Heart Lung Transplant. 21, 971–975 (2002).

    PubMed  Google Scholar 

  123. Warth, J. D. et al. CFTR chloride channels in human and simian heart. Cardiovasc. Res. 31, 615–624 (1996).

    CAS  PubMed  Google Scholar 

  124. Chen, H. et al. Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart. Circulation 110, 700–704 (2004).

    CAS  PubMed  Google Scholar 

  125. Sellers, Z. M., De Arcangelis, V., Xiang, Y. & Best, P. M. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+-activated Cl channel activity to maintain contraction rate. J. Physiol. 588, 2417–2429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, D. et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet. 79, 1030–1039 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nakajima, M., Moriizumi, E., Koseki, H. & Shirasawa, T. Presenilin 1 is essential for cardiac morphogenesis. Dev. Dyn. 230, 795–799 (2004).

    CAS  PubMed  Google Scholar 

  128. Takeda, T. et al. Presenilin 2 regulates the systolic function of heart by modulating Ca2+ signaling. FASEB J. 19, 2069–2071 (2005).

    CAS  PubMed  Google Scholar 

  129. Brundel, B. J. J. M. et al. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc. Res. 54, 380–389 (2002).

    CAS  PubMed  Google Scholar 

  130. Ausma, J. et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96, 3157–3163 (1997).

    CAS  PubMed  Google Scholar 

  131. Bozi, L. H. et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J. Cell. Mol. Med. 20, 2208–2212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ma, S., Wang, Y., Chen, Y. & Cao, F. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim. Biophys. Acta 1852, 271–276 (2015).

    CAS  PubMed  Google Scholar 

  133. Lakatta, E. G. So! What's aging? Is cardiovascular aging a disease? J. Mol. Cell. Cardiol. 83, 1–13 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tannous, P. et al. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117, 3070–3078 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Salway, K. D., Gallagher, E. J., Page, M. M. & Stuart, J. A. Higher levels of heat shock proteins in longer-lived mammals and birds. Mech. Ageing Dev. 132, 287–297 (2011).

    CAS  PubMed  Google Scholar 

  136. Pride, H. et al. Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species. Biochem. Biophys. Res. Commun. 457, 669–675 (2015).

    CAS  PubMed  Google Scholar 

  137. Joseph, A. M. et al. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 11, 801–809 (2012).

    CAS  PubMed  Google Scholar 

  138. Yokoyama, K. et al. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett. 516, 53–57 (2002).

    CAS  PubMed  Google Scholar 

  139. Wang, H. D., Kazemi, E. & Benzer, S. Multiple-stress analysis for isolation of Drosophila longevity genes. Proc. Natl Acad. Sci. USA 101, 12610–12615 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Tonoki, A. et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 29, 1095–1106 (2009).

    CAS  PubMed  Google Scholar 

  141. Chondrogianni, N., Georgila, K., Kourtis, N., Tavernarakis, N. & Gonos, E. S. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J. 29, 611–622 (2015).

    CAS  PubMed  Google Scholar 

  142. Sassi, Y. et al. Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J. Clin. Invest. 124, 5385–5397 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Barile, L., Moccetti, T., Marban, E. & Vassalli, G. Roles of exosomes in cardioprotection. Eur. Heart J. 38, 1372–1379 (2016).

    Google Scholar 

  144. Giricz, Z. et al. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J. Mol. Cell. Cardiol. 68, 75–78 (2014).

    CAS  PubMed  Google Scholar 

  145. Li, J. et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res. Cardiol. 109, 423 (2014).

    PubMed  Google Scholar 

  146. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    CAS  PubMed  Google Scholar 

  147. He, K. et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 92, 39–47 (2011).

    CAS  PubMed  Google Scholar 

  148. Pattison, J. S. & Robbins, J. Protein misfolding and cardiac disease: establishing cause and effect. Autophagy 4, 821–823 (2008).

    CAS  PubMed  Google Scholar 

  149. Ayyadevara, S. et al. Age- and hypertension-associated protein aggregates in mouse heart have similar proteomic profiles. Hypertension 67, 1006–1013 (2016).

    CAS  PubMed  Google Scholar 

  150. Tang, M. et al. Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc. Res. 88, 424–433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, X. et al. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension 64, 738–744 (2014).

    CAS  PubMed  Google Scholar 

  152. Doroudgar, S. et al. Hrd1 and ER-associated protein degradation, ERAD, are critical elements of the adaptive ER stress response in cardiac myocytes. Circ. Res. 117, 536–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Okada, K. et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110, 705–712 (2004).

    PubMed  Google Scholar 

  154. Jin, J. K. et al. ATF6 decreases myocardial ischemia/reperfusion damage and links ER stress and oxidative stress signaling pathways in the heart. Circ. Res. 120, 862–875 (2017).

    CAS  PubMed  Google Scholar 

  155. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    CAS  PubMed  Google Scholar 

  156. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hohn, A. et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 11, 482–501 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim, K. H., Chen, C. C., Monzon, R. I. & Lau, L. F. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol. Cell. Biol. 33, 2078–2090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hsu, P. L., Su, B. C., Kuok, Q. Y. & Mo, F. E. Extracellular matrix protein CCN1 regulates cardiomyocyte apoptosis in mice with stress-induced cardiac injury. Cardiovasc. Res. 98, 64–72 (2013).

    CAS  PubMed  Google Scholar 

  164. Ausma, J. et al. Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Mol. Cell. Biochem. 186, 159–168 (1998).

    CAS  PubMed  Google Scholar 

  165. Thijssen, V. L., Ausma, J. & Borgers, M. Structural remodelling during chronic atrial fibrillation: act of programmed cell survival. Cardiovasc. Res. 52, 14–24 (2001).

    CAS  PubMed  Google Scholar 

  166. Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Aspects Med. 32, 159–221 (2011).

    CAS  PubMed  Google Scholar 

  167. Quarles, E. K. et al. Quality control systems in cardiac aging. Ageing Res. Rev. 23, 101–115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Ferreira, R. et al. Unraveling the exercise-related proteome signature in heart. Basic Res. Cardiol. 110, 454 (2015).

    PubMed  Google Scholar 

  169. Hayes, S. M., Alosco, M. L. & Forman, D. E. The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Curr. Geriatr. Rep. 3, 282–290 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Maloyan, A., Gulick, J., Glabe, C. G., Kayed, R. & Robbins, J. Exercise reverses preamyloid oligomer and prolongs survival in alphaB-crystallin-based desmin-related cardiomyopathy. Proc. Natl Acad. Sci. USA 104, 5995–6000 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Giacomantonio, N. B., Bredin, S. S., Foulds, H. J. & Warburton, D. E. A systematic review of the health benefits of exercise rehabilitation in persons living with atrial fibrillation. Can. J. Cardiol. 29, 483–491 (2013).

    PubMed  Google Scholar 

  173. Myers, J. et al. Principles of exercise prescription for patients with chronic heart failure. Heart Fail. Rev. 13, 61–68 (2008).

    PubMed  Google Scholar 

  174. Eisele, Y. S. et al. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14, 759–780 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Dehay, B. et al. Targeting alpha-synuclein: therapeutic options. Mov Disord. 31, 882–888 (2016).

    CAS  PubMed  Google Scholar 

  176. McMullen, J. R. et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109, 3050–3055 (2004).

    CAS  PubMed  Google Scholar 

  177. Kanamori, H. et al. Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am. J. Pathol. 182, 701–713 (2013).

    CAS  PubMed  Google Scholar 

  178. Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl Med. 4, 144ra103 (2012).

    PubMed  PubMed Central  Google Scholar 

  179. Shende, P. et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 123, 1073–1082 (2011).

    PubMed  Google Scholar 

  180. Tannous, P. et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc. Natl Acad. Sci. USA 105, 9745–9750 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lamming, D. W., Ye, L., Sabatini, D. M. & Baur, J. A. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 123, 980–989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Chhajed, P. N. et al. Patterns of pulmonary complications associated with sirolimus. Respiration 73, 367–374 (2006).

    CAS  PubMed  Google Scholar 

  184. Johnston, O., Rose, C. L., Webster, A. C. & Gill, J. S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19, 1411–1418 (2008).

    PubMed  PubMed Central  Google Scholar 

  185. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 22, 1428–1438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11, 214–222 (2005).

    CAS  PubMed  Google Scholar 

  187. Stansfield, W. E. et al. Proteasome inhibition promotes regression of left ventricular hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 294, H645–H650 (2008).

    CAS  PubMed  Google Scholar 

  188. Drews, O. & Taegtmeyer, H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid. Redox Signal. 21, 2322–2343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9, 955–963 (2017).

    Google Scholar 

  190. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  192. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kaefer, A. et al. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. Cancer Chemother. Pharmacol. 74, 593–602 (2014).

    CAS  PubMed  Google Scholar 

  194. Mizushima, T. HSP-dependent protection against gastrointestinal diseases. Curr. Pharm. Des. 16, 1190–1196 (2010).

    CAS  PubMed  Google Scholar 

  195. Sanbe, A. et al. Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLoS ONE 4, e5351 (2009).

    PubMed  PubMed Central  Google Scholar 

  196. Santo, L. et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119, 2579–2589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Fullwood, M. J., Zhou, W. & Shenolikar, S. Targeting phosphorylation of eukaryotic initiation factor-2alpha to treat human disease. Prog. Mol. Biol. Transl Sci. 106, 75–106 (2012).

    CAS  PubMed  Google Scholar 

  198. Rani, S., Sreenivasaiah, P. K., Cho, C. & Kim, D. H. Salubrinal alleviates pressure overload-induced cardiac hypertrophy by inhibiting endoplasmic reticulum stress pathway. Mol. Cells 40, 66–72 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Cnop, M. et al. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J. Biol. Chem. 282, 3989–3997 (2007).

    CAS  PubMed  Google Scholar 

  200. Liu, C. L. et al. Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2α signaling pathway. J. Geriatr. Cardiol. 9, 258–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  201. Kolb, P. S. et al. The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. Int. J. Biochem. Cell Biol. 61, 45–52 (2015).

    CAS  PubMed  Google Scholar 

  202. Berry, S. A. et al. Glycerol phenylbutyrate treatment in children with urea cycle disorders: pooled analysis of short and long-term ammonia control and outcomes. Mol. Genet. Metab. 112, 17–24 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Kibleur, Y., Dobbelaere, D., Barth, M., Brassier, A. & Guffon, N. Results from a nationwide cohort temporary utilization authorization (ATU) survey of patients in France treated with Pheburane® (Sodium Phenylbutyrate) taste-masked granules. Paediatr. Drugs 16, 407–415 (2014).

    PubMed  PubMed Central  Google Scholar 

  204. Wang, X. et al. Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ. Res. 89, 84–91 (2001).

    CAS  PubMed  Google Scholar 

  205. McLendon, P. M. & Robbins, J. Desmin-related cardiomyopathy: an unfolding story. Am. J. Physiol. Heart Circ. Physiol. 301, H1220–H1228 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sanbe, A. Molecular mechanisms of alpha-crystallinopathy and its therapeutic strategy. Biol. Pharm. Bull. 34, 1653–1658 (2011).

    CAS  PubMed  Google Scholar 

  207. Zheng, Q., Su, H., Ranek, M. J. & Wang, X. Autophagy and p62 in cardiac proteinopathy. Circ. Res. 109, 296–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Sieira, J., Dendramis, G. & Brugada, P. Pathogenesis and management of Brugada syndrome. Nat. Rev. Cardiol. 13, 744–756 (2016).

    CAS  PubMed  Google Scholar 

  209. Lim, D. S., Roberts, R. & Marian, A. J. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J. Am. Coll. Cardiol. 38, 1175–1180 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Predmore, J. M. et al. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 121, 997–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Song, L. et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J. Cell. Mol. Med. 18, 2266–2274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Fidzianska, A., Bilinska, Z. T., Walczak, E., Witkowski, A. & Chojnowska, L. Autophagy in transition from hypertrophic cardiomyopathy to heart failure. J. Electron Microsc. (Tokyo) 59, 181–183 (2010).

    CAS  Google Scholar 

  213. Te Rijdt, W. P. et al. Phospholamban p.Arg14del cardiomyopathy is characterized by phospholamban aggregates, aggresomes, and autophagic degradation. Histopathology 69, 545–550 (2016).

    Google Scholar 

  214. Burke, M. A., Cook, S. A., Seidman, J. G. & Seidman, C. E. Clinical and mechanistic insights into the genetics of cardiomyopathy. J. Am. Coll. Cardiol. 68, 2871–2886 (2016).

    PubMed  PubMed Central  Google Scholar 

  215. Barrans, J. D., Allen, P. D., Stamatiou, D., Dzau, V. J. & Liew, C. C. Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am. J. Pathol. 160, 2035–2043 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Choi, J. C. et al. Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci. Transl Med. 4, 144ra102 (2012).

    PubMed  PubMed Central  Google Scholar 

  217. Kassiotis, C. et al. Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 120, S191–S197 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Lambert, V. et al. Right ventricular failure secondary to chronic overload in congenital heart disease: an experimental model for therapeutic innovation. J. Thorac. Cardiovasc. Surg. 139, 1197–1204.e1 (2010).

    PubMed  Google Scholar 

  219. Costa, M. W. et al. Functional characterization of a novel mutation in NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circ. Cardiovasc. Genet. 6, 238–247 (2013).

    CAS  PubMed  Google Scholar 

  220. Wang, X., Su, H. & Ranek, M. J. Protein quality control and degradation in cardiomyocytes. J. Mol. Cell. Cardiol. 45, 11–27 (2008).

    PubMed  PubMed Central  Google Scholar 

  221. Powell, S. R. & Divald, A. The ubiquitin-proteasome system in myocardial ischaemia and preconditioning. Cardiovasc. Res. 85, 303–311 (2010).

    CAS  PubMed  Google Scholar 

  222. Yan, L. et al. Autophagy in chronically ischemic myocardium. Proc. Natl Acad. Sci. USA 102, 13807–13812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zingarelli, B. et al. Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am. J. Physiol. Heart Circ. Physiol. 286, H1408–H1415 (2004).

    CAS  PubMed  Google Scholar 

  224. Bulteau, A. L. et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J. Biol. Chem. 276, 30057–30063 (2001).

    CAS  PubMed  Google Scholar 

  225. Powell, S. R., Davies, K. J. & Divald, A. Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations. J. Mol. Cell. Cardiol. 42, 265–269 (2007).

    CAS  PubMed  Google Scholar 

  226. Huang, Z. et al. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur. J. Pharmacol. 762, 1–10 (2015).

    CAS  PubMed  Google Scholar 

  227. Ma, X. et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125, 3170–3181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Wu, X. et al. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS ONE 9, e112891 (2014).

    PubMed  PubMed Central  Google Scholar 

  229. Aime-Sempe, C. et al. Myocardial cell death in fibrillating and dilated human right atria. J. Am. Coll. Cardiol. 34, 1577–1586 (1999).

    CAS  PubMed  Google Scholar 

  230. Ke, L. et al. Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation. J. Mol. Cell. Cardiol. 45, 685–693 (2008).

    CAS  PubMed  Google Scholar 

  231. Yuan, Y. et al. Autophagy: a potential novel mechanistic contributor to atrial fibrillation. Int. J. Cardiol. 172, 492–494 (2014).

    PubMed  Google Scholar 

  232. Chen, M. C. et al. Autophagy as a mechanism for myolysis of cardiomyocytes in mitral regurgitation. Eur. J. Clin. Invest. 41, 299–307 (2011).

    CAS  PubMed  Google Scholar 

  233. Ad, N., Snir, E., Vidne, B. A. & Golomb, E. Histologic atrial myolysis is associated with atrial fibrillation after cardiac operation. Ann. Thorac. Surg. 72, 688–693 (2001).

    CAS  PubMed  Google Scholar 

  234. Garcia, L. et al. Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. J. Thorac. Cardiovasc. Surg. 143, 451–459 (2012).

    PubMed  Google Scholar 

  235. St Rammos, K. et al. Low preoperative HSP70 atrial myocardial levels correlate significantly with high incidence of postoperative atrial fibrillation after cardiac surgery. Cardiovasc. Surg. 10, 228–232 (2002).

    PubMed  Google Scholar 

  236. Cao, H. et al. Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery. Cell Stress Chaperones 16, 517–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Day, S. M. The ubiquitin proteasome system in human cardiomyopathies and heart failure. Am. J. Physiol. Heart Circ. Physiol. 304, H1283–H1293 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Deroyer, C. et al. New biomarkers for primary mitral regurgitation. Clin. Proteomics 12, 25 (2015).

    PubMed  PubMed Central  Google Scholar 

  239. Otsuka, K. et al. Enhanced expression of the ubiquitin-proteasome system in the myocardium from patients with dilated cardiomyopathy referred for left ventriculoplasty: an immunohistochemical study with special reference to oxidative stress. Heart Vessels 25, 474–484 (2010).

    PubMed  Google Scholar 

  240. Baumgarten, A. TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy. Int. J. Cardiol. 168, 1447–1452 (2013).

    PubMed  Google Scholar 

  241. Saito, T. et al. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy 12, 579–587 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Despa, S. et al. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ. Res. 110, 598–608 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Kurucz, I. et al. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51, 1102–1109 (2002).

    CAS  PubMed  Google Scholar 

  244. Queisser, M. A. et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59, 670–678 (2010).

    CAS  PubMed  Google Scholar 

  245. Yu, X., Patterson, E. & Kem, D. C. Targeting proteasomes for cardioprotection. Curr. Opin. Pharmacol. 9, 167–172 (2009).

    CAS  PubMed  Google Scholar 

  246. Munasinghe, P. E. et al. Type-2 diabetes increases autophagy in the human heart through promotion of beclin-1 mediated pathway. Int. J. Cardiol. 202, 13–20 (2016).

    PubMed  Google Scholar 

  247. Kanamori, H. et al. Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes. Autophagy 11, 1146–1160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Herrmann, J., Soares, S. M., Lerman, L. O. & Lerman, A. Potential role of the ubiquitin-proteasome system in atherosclerosis: aspects of a protein quality disease. J. Am. Coll. Cardiol. 51, 2003–2010 (2008).

    CAS  PubMed  Google Scholar 

  249. Johnson, A. D., Berberian, P. A., Tytell, M. & Bond, M. G. Differential distribution of 70-kD heat shock protein in atherosclerosis. Its potential role in arterial SMC survival. Arterioscler. Thromb. Vasc. Biol. 15, 27–36 (1995).

    CAS  PubMed  Google Scholar 

  250. Versari, D. et al. Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 2132–2139 (2006).

    CAS  PubMed  Google Scholar 

  251. Martinet, W. & De Meyer, G. R. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ. Res. 104, 304–317 (2009).

    CAS  PubMed  Google Scholar 

  252. Logeart, D. et al. Evidence of cardiac myolysis in severe nonischemic heart failure and the potential role of increased wall strain. Am. Heart J. 141, 247–253 (2001).

    CAS  PubMed  Google Scholar 

  253. Willis, M. S. & Patterson, C. Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation 122, 1740–1751 (2010).

    PubMed  PubMed Central  Google Scholar 

  254. Kostin, S. et al. Myocytes die by multiple mechanisms in failing human hearts. Circ. Res. 92, 715–724 (2003).

    CAS  PubMed  Google Scholar 

  255. Bishu, K. et al. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade. PLoS ONE 8, e81325 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Michelle Michels (Erasmus Medical Center, The Netherlands) for providing human cardiomyocyte samples, Larissa Dorsch and Marit Wiersma (both VU Medical Center, The Netherlands) for providing information for Table 1, and Roelien Meijering and Deli Zhang (ACS Biomarker and VU Medical Center, The Netherlands, respectively) for contributions to the design of Figure 2. Furthermore, we acknowledge the support from The Netherlands Cardiovascular Research Initiative and Dutch Heart Foundation CVON2014-40 DOSIS and CVON-STW2016-14728 AFFIP, Dutch Heart Foundation (2013T096 and 2013T144), and LSH-TKI (40-43100-98-008).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Bianca J. J. M. Brundel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henning, R., Brundel, B. Proteostasis in cardiac health and disease. Nat Rev Cardiol 14, 637–653 (2017). https://doi.org/10.1038/nrcardio.2017.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.89

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing