Seasonal variations in cardiovascular disease

Key Points

  • Seasonal variations across a broad range of populations and climates (but predominantly derived from the temperate climates of Europe) have been documented in all types of cardiovascular disease (CVD)

  • Most studies report 'winter peaks' in CVD-related hospitalizations and mortality; event rates in winter are typically 10–20% greater than during 'summer troughs'

  • CVD seasonality is probably caused by a complex interaction between the susceptibility of individuals and a range of environmental factors (including ambient temperature)

  • CVD seasonality is most pronounced in individuals living in milder climates, who are least prepared for extreme weather variations

  • A lag effect, potentially modulated by air pollution levels and concurrent influenza, has been documented after 'cold snaps'

  • Potential exists to attenuate seasonality in CVD via multifaceted interventions that modulate exposure to various provocations to the cardiovascular system in high-risk individuals (those with established CVD)

Abstract

Cardiovascular disease (CVD) follows a seasonal pattern in many populations. Broadly defined winter peaks and clusters of all subtypes of CVD after 'cold snaps' are consistently described, with corollary peaks linked to heat waves. Individuals living in milder climates might be more vulnerable to seasonality. Although seasonal variation in CVD is largely driven by predictable changes in weather conditions, a complex interaction between ambient environmental conditions and the individual is evident. Behavioural and physiological responses to seasonal change modulate susceptibility to cardiovascular seasonality. The heterogeneity in environmental conditions and population dynamics across the globe means that a definitive study of this complex phenomenon is unlikely. However, given the size of the problem and a range of possible targets to reduce seasonal provocation of CVD in vulnerable individuals, scope exists for both greater recognition of the problem and application of multifaceted interventions to attenuate its effects. In this Review, we identify the physiological and environmental factors that contribute to seasonality in nearly all forms of CVD, highlight findings from large-scale population studies of this phenomenon across the globe, and describe the potential strategies that might attenuate peaks in cardiovascular events during cold and hot periods of the year.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Model of seasonal variation in cardiovascular disease: individual–environmental interactions.
Figure 2: Absolute difference in seasonal peak versus trough rates of cardiovascular events across the globe.

References

  1. 1

    Hippocrates & Galen. The Writings of Hippocrates and Galen http://oll.libertyfund.org/titles/hippocrates-the-writings-of-hippocrates-and-galen (1846).

  2. 2

    Marti-Soler, H. et al. Seasonal variation of overall and cardiovascular mortality: a study in 19 countries from different geographic locations. PLoS ONE 9, e113500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Parati, G., Ochoa, J. E., Lombardi, C. & Bilo, G. Assessment and management of blood-pressure variability. Nat. Rev. Cardiol. 10, 143–155 (2013).

    Article  PubMed  Google Scholar 

  4. 4

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259 (2006).

    Article  Google Scholar 

  5. 5

    World Health Organization. Climate change 2014: impacts, adaptation, and vulnerability. WHO http://www.who.int/globalchange/environment/climatechange-2014-report/en/ (2017).

  6. 6

    Empana, J. P. et al. Increase in out-of-hospital cardiac arrest attended by the medical mobile intensive care units, but not myocardial infarction, during the 2003 heat wave in Paris, France. Crit. Care Med. 37, 3079–3084 (2009).

    Article  PubMed  Google Scholar 

  7. 7

    Bundesen, H. N. & Falk, I. S. Low temperature, high barometer and sudden death. JAMA 87, 1987 (1926).

    Article  Google Scholar 

  8. 8

    Bean, W. B. & Mills, C. A. Coronary occlusion, heart failure, and environmental temperatures. Am. Heart J. 16, 701–713 (1938).

    Article  Google Scholar 

  9. 9

    Teng, H. C. & Heyer, H. E. The relationship between sudden changes in weather and the occurrence of acute myocardial infarction. Am. Heart J. 49, 9–20 (1955).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Heyer, H. E., Teng, H. C. & Barris, W. The increased frequency of acute myocardial infarction during summer months in a warm climate; a study of 1,386 cases from Dallas, Texas. Am. Heart J. 45, 741–748 (1953).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Depasquale, N. P. & Burch, G. E. The seasonal incidence of myocardial infarction in New Orleans. Am. J. Med. Sci. 242, 468–474 (1961).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Lake, B. Morbid conditions at death in old men. J. Chronic Dis. 21, 761–779 (1969).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Ellis, F. P. Mortality from heat illness and heat-aggravated illness in the United States. Environ. Res. 5, 1–58 (1972).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Burch, G. E., Oei, H. K. & Dillenkoffer, R. L. Survival in a coronary care unit. South. Med. J. 68, 947–951 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet 349, 1341–1346 (1997).

  16. 16

    Barnett, A. G. et al. Cold periods and coronary events: an analysis of populations worldwide. J. Epidemiol. Community Health 59, 551–557 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bunker, A. et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine 6, 258–268 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Liu, C., Yavar, Z. & Sun, Q. Cardiovascular response to thermoregulatory challenges. Am. J. Physiol. Heart Circ. Physiol. 309, H1793–H1812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Urban, A. et al. Spatial patterns of heat-related cardiovascular mortality in the Czech Republic. Int. J. Environ. Res. Public Health 13, 284 (2016).

    Article  PubMed Central  Google Scholar 

  21. 21

    Adolph, E. F. & Molnar, G. W. Exchanges of heat and tolerances to cold in men exposed to outdoor weather. Am. J. Physiol. 146, 507–537 (1946).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Thompson, G. E. Physiological effects of cold exposure. Int. Rev. Physiol. 15, 29–69 (1977).

    CAS  PubMed  Google Scholar 

  23. 23

    Graham, T. E. Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med. Sci. Sports Exerc. 20 (Suppl.), S185–S192 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Blatteis, C. M. Age-dependent changes in temperature regulation — a mini review. Gerontology 58, 289–295 (2012).

    Article  PubMed  Google Scholar 

  25. 25

    Manou-Stathopoulou, V. et al. The effects of cold and exercise on the cardiovascular system. Heart 101, 808–820 (2015).

    Article  PubMed  Google Scholar 

  26. 26

    Gagge, A. P. & Gonzalez, R. R. Mechanisms of heat exchange: biophysics and physiology. Compr. Physiol. http://dx.doi.org/10.1002/cphy.cp040104 (2011).

  27. 27

    Castellani, J. W. & Young, A. J. Human physiological responses to cold exposure: acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 196, 63–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Zhang, J. N. et al. Effects of low temperature on shear-induced platelet aggregation and activation. J. Trauma 57, 216–223 (2004).

    Article  PubMed  Google Scholar 

  29. 29

    Schneider, A. et al. Air temperature and inflammatory responses in myocardial infarction survivors. Epidemiology 19, 391–400 (2008).

    Article  PubMed  Google Scholar 

  30. 30

    Halonen, J. I., Zanobetti, A., Sparrow, D., Vokonas, P. S. & Schwartz, J. Associations between outdoor temperature and markers of inflammation: a cohort study. Environ. Health 9, 42 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Degroot, D. W. & Kenney, W. L. Impaired defense of core temperature in aged humans during mild cold stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R103–R108 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Falk, B., Bar-Or, O., Smolander, J. & Frost, G. Response to rest and exercise in the cold: effects of age and aerobic fitness. J. Appl. Physiol. 76, 72–78 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Frank, S. M., Raja, S. N., Bulcao, C. & Goldstein, D. S. Age-related thermoregulatory differences during core cooling in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R349–R354 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Kenney, W. L. & Armstrong, C. G. Reflex peripheral vasoconstriction is diminished in older men. J. Appl. Physiol. 80, 512–515 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Young, A. J. & Lee, D. T. Aging and human cold tolerance. Exp. Aging Res. 23, 45–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Smolander, J. Effect of cold exposure on older humans. Int. J. Sports Med. 23, 86–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Taylor, N. A., Allsopp, N. K. & Parkes, D. G. Preferred room temperature of young versus aged males: the influence of thermal sensation, thermal comfort, and affect. J. Gerontol. A Biol. Sci. Med. Sci. 50, M216–M221 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Leppaluoto, J., Korhonen, I. & Hassi, J. Habituation of thermal sensations, skin temperatures, and norepinephrine in men exposed to cold air. J. Appl. Physiol. 90, 1211–1218 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Young, A. J. et al. Exertional fatigue, sleep loss, and negative energy balance increase susceptibility to hypothermia. J. Appl. Physiol. 85, 1210–1217 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Hicks, C. S. & O'Connor, W. J. Skin temperature of Australian aboriginals under varying atmospheric conditions. Aust. J. Exp. Biol. Med. Sci. 16, 1–18 (1938).

    Article  Google Scholar 

  41. 41

    Lin, S., Soim, A., Gleason, K. A. & Hwang, S. A. Association between low temperature during winter season and hospitalizations for ischemic heart diseases in New York State. J. Environ. Health 78, 66–74 (2016).

    PubMed  Google Scholar 

  42. 42

    Dang, T. N. et al. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009–2013. Glob. Health Action 9, 28738 (2016).

    Article  PubMed  Google Scholar 

  43. 43

    Ding, Z. et al. Association of cold temperature and mortality and effect modification in the subtropical plateau monsoon climate of Yuxi, China. Environ. Res. 150, 431–437 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Ding, Z. et al. High diurnal temperature range and mortality: effect modification by individual characteristics and mortality causes in a case-only analysis. Sci. Total Environ. 544, 627–634 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Imai, C., Barnett, A. G., Hashizume, M. & Honda, Y. The role of influenza in the delay between low temperature and ischemic heart disease: evidence from simulation and mortality data from Japan. Int. J. Environ. Res. Public Health 13, 454 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  46. 46

    Nguyen, J. L. et al. Drier air, lower temperatures, and triggering of paroxysmal atrial fibrillation. Epidemiology 26, 374–380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Petitti, D. B., Hondula, D. M., Yang, S., Harlan, S. L. & Chowell, G. Multiple trigger points for quantifying heat-health impacts: new evidence from a hot climate. Environ. Health Perspect. 124, 176–183 (2016).

    Article  PubMed  Google Scholar 

  48. 48

    Phung, D. et al. Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci. Total Environ. 550, 1084–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Rakers, F. et al. Rapid weather changes are associated with increased ischemic stroke risk: a case-crossover study. Eur. J. Epidemiol. 31, 137–146 (2016).

    Article  PubMed  Google Scholar 

  50. 50

    Tian, L., Qiu, H., Sun, S. & Lin, H. Emergency cardiovascular hospitalization risk attributable to cold temperatures in Hong Kong. Circ. Cardiovasc. Qual. Outcomes 9, 135–142 (2016).

    Article  PubMed  Google Scholar 

  51. 51

    Zhang, Y. et al. The short-term effect of ambient temperature on mortality in Wuhan, China: a time-series study using a distributed lag non-linear model. Int. J. Environ. Res. Public Health 13, 722 (2016).

    Article  PubMed Central  Google Scholar 

  52. 52

    Green, D. J. et al. Impaired skin blood flow response to environmental heating in chronic heart failure. Eur. Heart J. 27, 338–343 (2006).

    Article  PubMed  Google Scholar 

  53. 53

    Kenney, W. L. & Munce, T. A. Invited review: aging and human temperature regulation. J. Appl. Physiol. 95, 2598–2603 (2003).

    Article  PubMed  Google Scholar 

  54. 54

    Gaffin, S. L. & Hubbard, R. W. in Medical Aspects of Harsh Environments Vol. 1 Ch. 5 (eds Pandolf, K. B. & Burr, R. E.) 161–208 (2001).

    Google Scholar 

  55. 55

    Hanna, E. G. & Tait, P. W. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int. J. Environ. Res. Public Health 12, 8034–8074 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Keatinge, W. R. et al. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Am. J. Med. 81, 795–800 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Balmain, B. N. et al. Altered thermoregulatory responses in heart failure patients exercising in the heat. Physiol. Rep. 4, e13022 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Selkirk, G. A. & McLellan, T. M. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J. Appl. Physiol. 91, 2055–2063 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Cheung, S. S. & McLellan, T. M. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J. Appl. Physiol. 84, 1731–1739 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Horowitz, M. & Robinson, S. D. Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog. Brain Res. 162, 433–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Donaldson, G. C., Ermakov, S. P., Komarov, Y. M., McDonald, C. P. & Keatinge, W. R. Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: observation and interview study. BMJ 317, 978–982 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Whittington, R. M. Snow-shovelling and coronary deaths. BMJ 1, 577 (1977).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Glass, R. I. & Zack, M. M. Jr. Increase in deaths from ischaemic heart-disease after blizzards. Lancet 1, 485–487 (1979).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Kavanagh, T. & Shephard, R. J. The immediate antecedents of myocardial infarction in active men. Can. Med. Assoc. J. 109, 19–22 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ma, Y. et al. Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur. J. Clin. Nutr. 60, 519–528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Marti-Soler, H. et al. Seasonality of cardiovascular risk factors: an analysis including over 230 000 participants in 15 countries. Heart 100, 1517–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Basnet, S. et al. Seasonal variations in mood and behavior associate with common chronic diseases and symptoms in a population-based study. Psychiatry Res. 238, 181–188 (2016).

    Article  PubMed  Google Scholar 

  68. 68

    Sandman, N. et al. Winter is coming: nightmares and sleep problems during seasonal affective disorder. J. Sleep Res. 25, 612–619 (2016).

    Article  PubMed  Google Scholar 

  69. 69

    Melrose, S. Seasonal affective disorder: an overview of assessment and treatment approaches. Depress. Res. Treat. 2015, 178564 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Nussbaumer, B. et al. Light therapy for preventing seasonal affective disorder. Cochrane Database Syst. Rev. 11, CD011269 (2015).

    Google Scholar 

  71. 71

    Tyrer, A. E. et al. Increased seasonal variation in serotonin transporter binding in seasonal affective disorder. Neuropsychopharmacology 41, 2447–2454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Tyrer, A. E. et al. Serotonin transporter binding is reduced in seasonal affective disorder following light therapy. Acta Psychiatr. Scand. 134, 410–419 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Holick, M. F. The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol. Aspects Med. 29, 361–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Bromage, S. et al. Seasonal epidemiology of serum 25-hydroxyvitamin D concentrations among healthy adults living in rural and urban areas in Mongolia. Nutrients 8, 592 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  75. 75

    Papandreou, D. & Hamid, Z. T. The role of vitamin D in diabetes and cardiovascular disease: an updated review of the literature. Dis. Markers 2015, 580474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Prodam, F. et al. Influence of ultraviolet radiation on the association between 25-hydroxy vitamin D levels and cardiovascular risk factors in obesity. J. Pediatr. 171, 83–89.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Alyami, A. M. et al. The association of vitamin D status with dyslipidaemia and biomarkers of endothelial cell activation in older Australians. Nutrients 8, 457 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  78. 78

    Muscogiuri, G. et al. Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives. Nutr. Metab. Cardiovasc. Dis. 22, 81–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Cardus, A. et al. 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 204, 85–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Sugden, J. A., Davies, J. I., Witham, M. D., Morris, A. D. & Struthers, A. D. Vitamin D improves endothelial function in patients with type 2 diabetes mellitus and low vitamin D levels. Diabet. Med. 25, 320–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Forman, J. P., Williams, J. S. & Fisher, N. D. Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension 55, 1283–1288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Burgaz, A., Orsini, N., Larsson, S. C. & Wolk, A. Blood 25-hydroxyvitamin D concentration and hypertension: a meta-analysis. J. Hypertens. 29, 636–645 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Krause, R., Bühring, M., Hopfenmüller, W., Holick, M. F. & Sharma, A. M. Ultraviolet B and blood pressure. Lancet 352, 709–710 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Verdoia, M. et al. Vitamin D deficiency is independently associated with the extent of coronary artery disease. Eur. J. Clin. Invest. 44, 634–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Degerud, E. et al. Cosinor modelling of seasonal variation in 25-hydroxyvitamin D concentrations in cardiovascular patients in Norway. Eur. J. Clin. Nutr. 70, 517–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Shah, A. S. et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 350, h1295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Hajat, A. et al. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation: a repeat-measures analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiology 26, 310–320 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Brook, R. D. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 105, 1534–1536 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Jacobs, L. et al. Air pollution related prothrombotic changes in persons with diabetes. Environ. Health Perspect. 118, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Rudez, G. et al. Effects of ambient air pollution on hemostasis and inflammation. Environ. Health Perspect. 117, 995–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Zhao, A. et al. Associations between size-fractionated particulate air pollution and blood pressure in a panel of type II diabetes mellitus patients. Environ. Int. 80, 19–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Zuniga, J. et al. Assessment of the possible association of air pollutants PM10, O3, NO2 with an increase in cardiovascular, respiratory, and diabetes mortality in Panama City: a 2003 to 2013 data analysis. Medicine (Baltimore) 95, e2464 (2016).

    Article  CAS  Google Scholar 

  94. 94

    Pintaric, S. et al. Impact of meteorological parameters and air pollution on emergency department visits for cardiovascular diseases in the city of Zagreb, Croatia. Arh. Hig. Rada Toksikol. 67, 240–246 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Stojic, S. S., Stanisic, N., Stojic, A. & Sostaric, A. Single and combined effects of air pollutants on circulatory and respiratory system-related mortality in Belgrade, Serbia. J. Toxicol. Environ. Health A 79, 17–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Su, C. et al. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China. Int. Arch. Occup. Environ. Health 89, 641–657 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Tsangari, H. et al. Extreme weather and air pollution effects on cardiovascular and respiratory hospital admissions in Cyprus. Sci. Total Environ. 542, 247–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Samoli, E. et al. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occup. Environ. Med. 73, 300–307 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Huang, F. et al. Particulate matter and hospital admissions for stroke in Beijing, China: modification effects by ambient temperature. J. Am. Heart Assoc. 5, e003437 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Lin, H. et al. Mortality burden of ambient fine particulate air pollution in six Chinese cities: results from the Pearl River Delta study. Environ. Int. 96, 91–97 (2016).

    Article  PubMed  Google Scholar 

  101. 101

    Thurston, G. D. et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 124, 785–794 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Sen, T. et al. The effects of air pollution and weather conditions on the incidence of acute myocardial infarction. Am. J. Emerg. Med. 34, 449–454 (2016).

    Article  PubMed  Google Scholar 

  103. 103

    Santurtún, A., Sanchez-Lorenzo, A., Villar, A., Riancho, J. A. & Zarrabeitia, M. T. The influence of nitrogen dioxide on arrhythmias in Spain and its relationship with atmospheric circulation. Cardiovasc. Toxicol. 17, 88–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    van Zelm, R., Preiss, P., van Goethem, T., Van Dingenen, R. & Huijbregts, M. Regionalized life cycle impact assessment of air pollution on the global scale: damage to human health and vegetation. Atmos. Environ. 134, 129–137 (2016).

    Article  CAS  Google Scholar 

  105. 105

    Claeys, M. J., Rajagopalan, S., Nawrot, T. S. & Brook, R. D. Climate and environmental triggers of acute myocardial infarction. Eur. Heart J. 38, 955–960 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Shah, A. S. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Bermudez-Fajardo, A. & Oviedo-Orta, E. Influenza vaccination promotes stable atherosclerotic plaques in apoE knockout mice. Atherosclerosis 217, 97–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Corrales-Medina, V. F., Madjid, M. & Musher, D. M. Role of acute infection in triggering acute coronary syndromes. Lancet Infect. Dis. 10, 83–92 (2010).

    Article  PubMed  Google Scholar 

  109. 109

    Warren-Gash, C., Smeeth, L. & Hayward, A. C. Influenza as a trigger for acute myocardial infarction or death from cardiovascular disease: a systematic review. Lancet Infect. Dis. 9, 601–610 (2009).

    Article  PubMed  Google Scholar 

  110. 110

    Nguyen, J. L. et al. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol. 1, 274–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Guiraud, V., Amor, M. B., Mas, J.-L. & Touzé, E. Triggers of ischemic stroke: a systematic review. Stroke 41, 2669–2677 (2010).

    Article  PubMed  Google Scholar 

  112. 112

    Breitner, S., Wolf, K., Peters, A. & Schneider, A. Short-term effects of air temperature on cause-specific cardiovascular mortality in Bavaria, Germany. Heart 100, 1272–1280 (2014).

    Article  PubMed  Google Scholar 

  113. 113

    Eng, H. & Mercer, J. B. The relationship between mortality caused by cardiovascular diseases and two climatic factors in densely populated areas in Norway and Ireland. J. Cardiovasc. Risk 7, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Reavey, M., Saner, H., Paccaud, F. & Marques-Vidal, P. Exploring the periodicity of cardiovascular events in Switzerland: variation in deaths and hospitalizations across seasons, day of the week and hour of the day. Int. J. Cardiol. 168, 2195–2200 (2013).

    Article  PubMed  Google Scholar 

  115. 115

    Chau, P. H., Wong, M. & Woo, J. Ischemic heart disease hospitalization among older people in a subtropical city — Hong Kong: does winter have a greater impact than summer? Int. J. Environ. Res. Public Health 11, 3845–3858 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Li, Y. et al. The seasonality of acute coronary syndrome and its relations with climatic parameters. Am. J. Emerg. Med. 29, 768–774 (2011).

    Article  PubMed  Google Scholar 

  117. 117

    Spencer, F. A., Goldberg, R. J., Becker, R. C. & Gore, J. M. Seasonal distribution of acute myocardial infarction in the second National Registry of Myocardial Infarction. J. Am. Coll. Cardiol. 31, 1226–1233 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Cagle, A. & Hubbard, R. Cold-related cardiac mortality in King County, Washington, USA 1980–2001. Ann. Hum. Biol. 32, 525–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Gerber, Y., Jacobsen, S. J., Killian, J. M., Weston, S. A. & Roger, V. L. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002. J. Am. Coll. Cardiol. 48, 287–292 (2006).

    Article  PubMed  Google Scholar 

  120. 120

    Toro, K. et al. Characteristics of cardiovascular deaths in forensic medical cases in Budapest, Vilnius and Tallinn. J. Forensic Leg. Med. 20, 968–971 (2013).

    Article  PubMed  Google Scholar 

  121. 121

    Boulay, F., Berthier, F., Sisteron, O., Gendreike, Y. & Gibelin, P. Seasonal variation in chronic heart failure hospitalizations and mortality in France. Circulation 100, 280–286 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Stewart, S., McIntyre, K., Capewell, S. & McMurray, J. J. Heart failure in a cold climate: seasonal variation in heart failure-related morbidity and mortality. J. Am. Coll. Cardiol. 39, 760–766 (2002).

    Article  PubMed  Google Scholar 

  123. 123

    San Roman Teran, C. M. et al. Analysis of 27,248 hospital discharges for heart failure: a study of an administrative database 1998–2002. Rev. Clin. Esp. 208, 281–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Qiu, H. et al. Is greater temperature change within a day associated with increased emergency hospital admissions for heart failure? Circ. Heart Fail. 6, 930–935 (2013).

    Article  PubMed  Google Scholar 

  125. 125

    Frost, L. et al. Seasonal variation in hospital discharge diagnosis of atrial fibrillation: a population-based study. Epidemiology 13, 211–215 (2002).

    Article  PubMed  Google Scholar 

  126. 126

    Murphy, N. F., Stewart, S., MacIntyre, K., Capewell, S. & McMurray, J. J. Seasonal variation in morbidity and mortality related to atrial fibrillation. Int. J. Cardiol. 97, 283–288 (2004).

    Article  PubMed  Google Scholar 

  127. 127

    Upshur, R. E., Moineddin, R., Crighton, E. J. & Mamdani, M. Is there a clinically significant seasonal component to hospital admissions for atrial fibrillation? BMC Health Serv. Res. 4, 5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Jakovljevic, D. et al. Seasonal variation in the occurrence of stroke in a Finnish adult population: the FINMONICA Stroke Register. Finnish monitoring trends and determinants in cardiovascular disease. Stroke 27, 1774–1779 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Lichtman, J. H., Leifheit-Limson, E. C., Jones, S. B., Wang, Y. & Goldstein, L. B. Average temperature, diurnal temperature variation, and stroke hospitalizations. J. Stroke Cerebrovasc. Dis. 25, 1489–1494 (2016).

    Article  PubMed  Google Scholar 

  130. 130

    Han, M. H., Yi, H. J., Ko, Y., Kim, Y. S. & Lee, Y. J. Association between hemorrhagic stroke occurrence and meteorological factors and pollutants. BMC Neurol. 16, 59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Stewart, S. et al. Seasonal variations in cardiovascular-related mortality but not hospitalization are modulated by temperature and not climate type: a systematic review and meta-analysis of 4.5 million events in 26 countries. Circulation 134, A16759–A16759 (2016).

    Google Scholar 

  132. 132

    Kynast-Wolf, G., Preuss, M., Sie, A., Kouyate, B. & Becher, H. Seasonal patterns of cardiovascular disease mortality of adults in Burkina Faso, West Africa. Trop. Med. Int. Health 15, 1082–1089 (2010).

    PubMed  Google Scholar 

  133. 133

    Ben Ahmed, H. et al. Diurnal, weekly and seasonal variation of sudden cardiac death in northern Tunisia [French]. Presse Med. 43, e39–e45 (2014).

    Article  PubMed  Google Scholar 

  134. 134

    Katz, A., Biron, A., Ovsyshcher, E. & Porath, A. Seasonal variation in sudden death in the Negev desert region of Israel. Isr. Med. Assoc. J. 2, 17–21 (2000).

    CAS  PubMed  Google Scholar 

  135. 135

    Savopoulos, C. et al. Circadian rhythm in sudden cardiac death: a retrospective study of 2,665 cases. Angiology 57, 197–204 (2006).

    Article  PubMed  Google Scholar 

  136. 136

    Ye, X. et al. Acute effects of particulate air pollution on the incidence of coronary heart disease in Shanghai, China. PLoS ONE 11, e0151119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Arntz, H. R. et al. Diurnal, weekly and seasonal variation of sudden death: population-based analysis of 24,061 consecutive cases. Eur. Heart J. 21, 315–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Cantwell, K., Morgans, A., Smith, K., Livingston, M. & Dietze, P. Temporal trends in cardiovascular demand in EMS: weekday versus weekend differences. Chronobiol. Int. 32, 731–738 (2015).

    Article  PubMed  Google Scholar 

  139. 139

    Dilaveris, P. et al. Climate impacts on myocardial infarction deaths in the Athens territory: the CLIMATE study. Heart 92, 1747–1751 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Godoy, H. L., Silveira, J. A., Segalla, E. & Almeida, D. R. Hospitalization and mortality rates for heart failure in public hospitals in Sao Paulo. Arq. Bras. Cardiol. 97, 402–407 (2011).

    Article  PubMed  Google Scholar 

  141. 141

    Hong, J. S. & Kang, H. C. Seasonal variation in case fatality rate in Korean patients with acute myocardial infarction using the 1997–2006 Korean National Health Insurance claims database. Acta Cardiol. 69, 513–521 (2014).

    Article  PubMed  Google Scholar 

  142. 142

    Hopstock, L. A. et al. Seasonal variation in incidence of acute myocardial infarction in a sub-Arctic population: the Tromso Study 1974–2004. Eur. J. Cardiovasc. Prev. Rehabil. 18, 320–325 (2011).

    Article  PubMed  Google Scholar 

  143. 143

    Kolb, S., Radon, K., Valois, M. F., Heguy, L. & Goldberg, M. S. The short-term influence of weather on daily mortality in congestive heart failure. Arch. Environ. Occup. Health 62, 169–176 (2007).

    Article  PubMed  Google Scholar 

  144. 144

    Lee, J. H. et al. Influence of weather on daily hospital admissions for acute myocardial infarction (from the Korea Acute Myocardial Infarction Registry). Int. J. Cardiol. 144, 16–21 (2010).

    Article  PubMed  Google Scholar 

  145. 145

    Manfredini, R. et al. Seasonal and weekly patterns of hospital admissions for nonfatal and fatal myocardial infarction. Am. J. Emerg. Med. 27, 1097–1103 (2009).

    Article  PubMed  Google Scholar 

  146. 146

    Messner, T. & Lundberg, V. Trends in sudden cardiac death in the northern Sweden MONICA area 1985–1999. J. Intern. Med. 253, 320–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Mohammadian-Hafshejani, A. et al. Seasonal pattern in admissions and mortality from acute myocardial infarction in elderly patients in Isfahan, Iran. ARYA Atheroscler. 10, 46–55 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. 148

    Schreier, N. K., Moltchanova, E. V., Lammi, N. M., Karvonen, M. L. & Eriksson, J. G. Temporal variation in case fatality of acute myocardial infarction in Finland. Ann. Med. 41, 73–80 (2009).

    Article  PubMed  Google Scholar 

  149. 149

    Sharovsky, R. & César, L. A. Increase in mortality due to myocardial infarction in the Brazilian city of Sao Paulo during winter. Arq. Bras. Cardiol. 78, 106–109 (2002).

    Article  PubMed  Google Scholar 

  150. 150

    Wichmann, J., Rosengren, A., Sjoberg, K., Barregard, L. & Sallsten, G. Association between ambient temperature and acute myocardial infarction hospitalisations in Gothenburg, Sweden: 1985–2010. PLoS ONE 8, e62059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Bodis, J., Koppan, M., Boncz, I. & Kriszbacher, I. Time of sunrise and hours with daylight may have an effect on the seasonality and diurnal variation of heart attack. Chin. Med. J. (Engl.) 122, 2107–2110 (2009).

    Google Scholar 

  152. 152

    Kriszbacher, I., Boncz, I., Koppan, M. & Bodis, J. Seasonal variations in the occurrence of acute myocardial infarction in Hungary between 2000 and 2004. Int. J. Cardiol. 129, 251–254 (2008).

    Article  PubMed  Google Scholar 

  153. 153

    Loughnan, M. E., Nicholls, N. & Tapper, N. J. Demographic, seasonal, and spatial differences in acute myocardial infarction admissions to hospital in Melbourne Australia. Int. J. Health Geogr. 7, 42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  154. 154

    Watts, N. et al. The Lancet Countdown: tracking progress on health and climate change. Lancet 389, 1151–1164 (2017).

    Article  PubMed  Google Scholar 

  155. 155

    Saeki, K. et al. Influence of room heating on ambulatory blood pressure in winter: a randomised controlled study. J. Epidemiol. Community Health 67, 484–490 (2013).

    Article  PubMed  Google Scholar 

  156. 156

    Martinez-Nicolas, A. et al. Daytime variation in ambient temperature affects skin temperatures and blood pressure: ambulatory winter/summer comparison in healthy young women. Physiol. Behav. 149, 203–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. 157

    Kurlansik, S. L. & Ibay, A. D. Seasonal affective disorder. Am. Fam. Physician 86, 1037–1041 (2012).

    PubMed  Google Scholar 

  158. 158

    Barnes, M. et al. Acute myocardial infarction and influenza: a meta-analysis of case-control studies. Heart 101, 1738–1747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    MacIntyre, C. R., Mahimbo, A., Moa, A. M. & Barnes, M. Influenza vaccine as a coronary intervention for prevention of myocardial infarction. Heart 102, 1953–1956 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. 160

    Vardeny, O. et al. Influenza vaccination in patients with chronic heart failure: the PARADIGM-HF trial. JACC Heart Fail. 4, 152–158 (2016).

    Article  PubMed  Google Scholar 

  161. 161

    Ren, S. et al. Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart 2, e000247 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Siriwardena, A. N., Gwini, S. M. & Coupland, C. A. Influenza vaccination, pneumococcal vaccination and risk of acute myocardial infarction: matched case-control study. CMAJ 182, 1617–1623 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. 163

    Neidell, M. Air quality warnings and outdoor activities: evidence from Southern California using a regression discontinuity design. J. Epidemiol. Community Health 64, 921–926 (2010).

    Article  PubMed  Google Scholar 

  164. 164

    Chalabi, Z. et al. Evaluation of the cold weather plan for England: modelling of cost-effectiveness. Public Health 137, 13–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Chiu, C. H., Noe, R. S., Martin, J. P., Wolkin, A. F. & Vagi, S. J. The use of community assessment for public health emergency response to evaluate nws warnings. Bull. Am. Meteorol. Soc. 95, 18–21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. 166

    Chiu, C. H., Vagi, S. J., Wolkin, A. F., Martin, J. P. & Noe, R. S. Evaluation of the national weather service extreme cold warning experiment in North Dakota. Weather Clim. Soc. 6, 22–31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.S. is supported by a National Health and Medical Research Council of Australia Fellowship (1041766). A.K.K. is supported by the National Health and Medical Research Council of Australia Centre of Research Excellence to Reduce Inequality in Heart Disease (044897).

Author information

Affiliations

Authors

Contributions

All the authors contributed to researching data, discussions of content, writing the article, and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Simon Stewart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stewart, S., Keates, A., Redfern, A. et al. Seasonal variations in cardiovascular disease. Nat Rev Cardiol 14, 654–664 (2017). https://doi.org/10.1038/nrcardio.2017.76

Download citation

Further reading