Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Efficient design of clinical trials and epidemiological research: is it possible?

Abstract

Randomized clinical trials and large-scale, cohort studies continue to have a critical role in generating evidence in cardiovascular medicine; however, the increasing concern is that ballooning costs threaten the clinical trial enterprise. In this Perspectives article, we discuss the changing landscape of clinical research, and clinical trials in particular, focusing on reasons for the increasing costs and inefficiencies. These reasons include excessively complex design, overly restrictive inclusion and exclusion criteria, burdensome regulations, excessive source-data verification, and concerns about the effect of clinical research conduct on workflow. Thought leaders have called on the clinical research community to consider alternative, transformative business models, including those models that focus on simplicity and leveraging of digital resources. We present some examples of innovative approaches by which some investigators have successfully conducted large-scale, clinical trials at relatively low cost. These examples include randomized registry trials, cluster-randomized trials, adaptive trials, and trials that are fully embedded within digital clinical care or administrative platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cost trajectories for clinical trials.

Similar content being viewed by others

References

  1. Sundström, J. et al. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet 384, 591–598 (2014).

    Article  Google Scholar 

  2. Mihaylova, B. et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta analysis of data from 170000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Anthonisen, N. R. et al. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann. Intern. Med. 142, 233–239 (2005).

    Article  PubMed  Google Scholar 

  5. U.S. Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 150, 396–404 (2009).

  6. Cutler, D. M. & Kadiyala, S. in Measuring the Gains from Medical Research: an Economic Approach (eds Murphy, K. M. & Topel, R. H.) 110–162 (Univ. of Chicago Press, 2003).

    Book  Google Scholar 

  7. Ford, E. S. et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 356, 2388–2398 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Eisenstein, E. L. et al. Sensible approaches for reducing clinical trial costs. Clin. Trials 5, 75–84 (2008).

    Article  PubMed  Google Scholar 

  9. Yusuf, S. Transforming the scientific, health care, and sociopolitical culture of an entire country through clinical research: the story of GISSI. Am. Heart J. 148, 193–195 (2004).

    Article  PubMed  Google Scholar 

  10. Antman, E. M. & Harrington, R. A. Transforming clinical trials in cardiovascular disease: mission critical for health and economic well-being. JAMA 308, 1743–1744 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  12. Tavazzi, L., Maggioni, A. P. & Tognoni, G. Participation versus education: the GISSI story and beyond. Am. Heart J. 148, 222–229 (2004).

    Article  PubMed  Google Scholar 

  13. Sertkaya, A., Birkenbach, A., Berlind, A. & Eyraud, J. Examination of clinical trial costs and barriers for drug development. Office of the Assistant Secretary for Planning and Evaluation https://aspe.hhs.gov/system/files/pdf/77166/rpt_erg.pdf (2014).

    Google Scholar 

  14. Berndt, E. R. & Cockburn, I. M. Price indexes for clinical trial research: a feasibility study. National Bureau of Economic Research http://www.nber.org/papers/w18918.pdf (2013).

    Google Scholar 

  15. Califf, R. M. Clinical trials bureaucracy: unintended consequences of well-intentioned policy. Clin. Trials 3, 496–502 (2006).

    Article  PubMed  Google Scholar 

  16. Getz, K. Improving protocol design feasibility to drive drug development economics and performance. Int. J. Environ. Res. Public Health 11, 5069–5080 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Devereaux, P. J. & Yusuf, S. When it comes to trials, do we get what we pay for? N. Engl. J. Med. 369, 1962–1963 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Kramer, J. M., Smith, P. B. & Califf, R. M. Impediments to clinical research in the United States. Clin. Pharmacol. Ther. 91, 535–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Roy, A. S. A. Stifling new cures: the true cost of lengthy clinical drug trials. Manhattan Institute https://www.manhattan-institute.org/html/stifling-new-cures-true-cost-lengthy-clinical-drug-trials-6013.html (2012).

    Google Scholar 

  20. Moses, H. et al. The anatomy of medical research. JAMA 313, 174–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Jenkins, J. K. CDER new drug review: 2016 update. U.S. Food and Drug Administration https://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM533192.pdf (2016).

    Google Scholar 

  22. Kramer, J. M. & Schulman, K. A. in Envisioning a Transformed Clinical Trials Enterprise in the United States: Establishing an Agenda for 2020: Workshop Summary 183–192 (National Academies Press, 2012).

    Google Scholar 

  23. Lauer, M. S. Time for a creative transformation of epidemiology in the United States. JAMA 308, 1804–1805 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Khoury, M. J. et al. Transforming epidemiology for 21st century medicine and public health. Cancer Epidemiol. Biomarkers Prev. 22, 508–516 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Landrigan, P. J. & Baker, D. B. The National Children's Study — end or new beginning? N. Engl. J. Med. 372, 1486–1487 (2015).

    Article  PubMed  Google Scholar 

  26. Tricoci, P. et al. Scientific evidence underlying the ACC/AHA clinical practice guidelines. JAMA 301, 831–841 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Lauer, M. S. A policy for science. J. Am. Coll. Cardiol. 59, 2154–2156 (2012).

    Article  PubMed  Google Scholar 

  28. Califf, R. M. et al. Transforming evidence generation to support health and health care decisions. N. Engl. J. Med. 375, 2395–2400 (2016).

    Article  PubMed  Google Scholar 

  29. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Hudson, K., Lauer, M. & Collins, F. Toward a new era of trust and transparency in clinical trials. JAMA 316, 1353–1354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ross, J. S. et al. Publication of NIH funded trials registered in ClinicalTrials.gov: cross sectional analysis. BMJ 344, d7292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen, R. et al. Publication and reporting of clinical trial results: cross sectional analysis across academic medical centers. BMJ 352 i637 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gordon, D. J. & Lauer, M. S. Publication of trials funded by the National Heart, Lung, and Blood Institute. N. Engl. J. Med. 370, 782 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Gordon, D., Cooper-Arnold, K., Lauer, M., Cooper-Arnold, K. & Lauer, M. Publication speed, reporting metrics, and citation impact of cardiovascular trials supported by the National Heart, Lung, and Blood Institute. J. Am. Heart Assoc. 4, e002292 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mullard, A. NIH tackles clinical trial shortcomings. Nat. Rev. Drug Discov. 15, 297–298 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Lyubarova, R., Itagaki, B. K. & Itagaki, M. W. The impact of National Institutes of Health funding on U.S. cardiovascular disease research. PLoS ONE 4, e6425 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sertkaya, A., Wong, H.-H., Jessup, A. & Beleche, T. Key cost drivers of pharmaceutical clinical trials in the United States. Clin. Trials 13, 117–126 (2016).

    Article  PubMed  Google Scholar 

  39. Eapen, Z. J., Lauer, M. S. & Temple, R. J. The imperative of overcoming barriers to the conduct of large, simple trials. JAMA 311, 1397–1398 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Udell, J. A. et al. Clinical trial participation after myocardial infarction in a national cardiovascular data registry. JAMA 312, 841–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Schaefer, G. O., Emanuel, E. J. & Wertheimer, A. The obligation to participate in biomedical research. JAMA 302, 67–72 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Murthy, V. H., Krumholz, H. M. & Gross, C. P. Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA 291, 2720–2726 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Brownlee, S. & Winters, D. Bad science and breast cancer. Discover Magazine http://discovermagazine.com/2002/aug/featbad (2002).

    Google Scholar 

  44. Marshall, E. A. Medicine. A bruising battle over lung scans. Science 320, 600–603 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Califf, R. M. Clinical research sites — the underappreciated component of the clinical research system. JAMA 302, 2025–2027 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mailankody, S. & Prasad, V. Comparative effectiveness questions in oncology. N. Engl. J. Med. 370, 1478–1481 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Tufts Center for Drug Development. Tufts CSDD impact report. Current investigator landscape poses a growing challenge for sponsors. Tufts University http://csdd.tufts.edu/reports/purchase_single_impact_report?issue=Vol11%20No1 (2009).

  48. Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation, English, R., Lebovitz, Y. & Giffin, R. Transforming Clinical Research in the United States: Challenges and Opportunities: Workshop Summary (National Academies Press, 2010).

    Google Scholar 

  49. Gordon, D. et al. Publication of trials funded by the National Heart, Lung, and Blood Institute. N. Engl. J. Med. 369, 1926–1934 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Djulbegovic, B., Kumar, A., Glasziou, P., Miladinovic, B. & Chalmers, I. Medical research: trial unpredictability yields predictable therapy gains. Nature 500, 395–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. National Institutes of Health. US GAO-16-304 report. Additional data would enhance the stewardship of clinical trials across the agency. U.S. Government Accountability Office http://www.gao.gov/assets/680/675711.pdf (2016).

  52. National Institutes of Health. CTSA consortium tackling clinical trial recruitment roadblocks. National Institutes of Health https://ncats.nih.gov/pubs/features/ctsa-act (2015).

  53. SMART IRB. About SMART IRB. https://smartirb.org/about-us/ (2016).

  54. van Staa, T.-P. et al. The opportunities and challenges of pragmatic point-of-care randomised trials using routinely collected electronic records: evaluations of two exemplar trials. Health Technol. Assess. 18, 1–146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Califf, R. M., Sanderson, I. & Miranda, M. L. The future of cardiovascular clinical research: informatics, clinical investigators, and community engagement. JAMA 308, 1747–1748 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Fiore, L. D. et al. A point-of-care clinical trial comparing insulin administered using a sliding scale versus a weight-based regimen. Clin. Trials 8, 183–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Collins, F. S., Hudson, K. L., Briggs, J. P. & Lauer, M. S. PCORnet: turning a dream into reality. J. Am. Med. Inf. Assoc. 21, 576–577 (2014).

    Article  Google Scholar 

  58. Frobert, O. et al. Thrombus aspiration in ST-elevation myocardial infarction in Scandinavia (TASTE trial). A multicenter, prospective, randomized, controlled clinical registry trial based on the Swedish angiography and angioplasty registry (SCAAR) platform. Study design and rationale. Am. Heart. J. 160, 1042–1048 (2010).

    Article  PubMed  Google Scholar 

  59. Frobert, O. et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N. Engl. J. Med. 369, 1587–1597 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Jolly, S. S. et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N. Engl. J. Med. 372, 1389–1398 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lauer, M. S. & D'Agostino, R. B. Sr. The randomized registry trial — the next disruptive technology in clinical research? N. Engl. J. Med. 369, 1579–1581 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Gulliford, M. C. et al. Electronic health records for intervention research: a cluster randomized trial to reduce antibiotic prescribing in primary care (eCRT study). Ann. Fam. Med. 12, 344–351 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gulliford, M. C. et al. Cluster randomized trials utilizing primary care electronic health records: methodological issues in design, conduct, and analysis (eCRT Study). Trials 15, 220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dregan, A. et al. Point-of-care cluster randomized trial in stroke secondary prevention using electronic health records. Stroke 45, 2066–2071 (2014).

    Article  PubMed  Google Scholar 

  65. Dregan, A. et al. Cluster randomized trial in the general practice research database: 2. secondary prevention after first stroke (eCRT study): study protocol for a randomized controlled trial. Trials 13, 181 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rao, S. V. et al. A registry-based randomized trial comparing radial and femoral approaches in women undergoing percutaneous coronary intervention: the SAFE-PCI for Women (Study of Access Site for Enhancement of PCI for Women) trial. JACC Cardiovasc. Interv. 7, 857–867 (2014).

    Article  PubMed  Google Scholar 

  67. Califf, R. M. & Platt, R. Embedding cardiovascular research into practice. JAMA 310, 2037–2038 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. NIH Collaboratory. Demonstration projects. NIH Collaboratory https://www.nihcollaboratory.org/demonstration-projects/Pages/default.aspx (2016).

  69. VITAL. The VITamin D and OmegA-3 TriaL. VITAL http://www.vitalstudy.org (2016).

  70. Christiansen, E. H. et al. Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V): a randomised non-inferiority trial. Lancet 381, 661–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Frank, L. Epidemiology. When an entire country is a cohort. Science 287, 2398–2399 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Andersen, T. F., Madsen, M., Jørgensen, J., Mellemkjoer, L. & Olsen, J. H. The Danish National Hospital Register. A valuable source of data for modern health sciences. Dan. Med. Bull. 46, 263–268 (1999).

    CAS  PubMed  Google Scholar 

  73. Hernandez, A. F., Fleurence, R. L. & Rothman, R. L. The ADAPTABLE trial and PCORnet: shining light on a new research paradigm. Ann. Intern. Med. http://dx.doi.org/10.7326/M15-1460 (2015).

  74. Heddle, N. M. et al. Effect of short-term versus long-term blood storage on mortality after transfusion. N. Engl. J. Med. 375, 1937–1945 (2016).

    Article  PubMed  Google Scholar 

  75. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Choudhry, N. K. et al. Full coverage for preventive medications after myocardial infarction. N. Engl. J. Med. 365, 2088–2097 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, S. S. et al. Targeted versus universal decolonization to prevent ICU infection. N. Engl. J. Med. 368, 2255–2265 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Wilber, D. J. et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA 303, 333–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Stern, A. D., Alexander, B. M. & Chandra, A. How economics can shape precision medicines. Science 355, 1131–1133 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. McMurray, J. J. V. & O'Connor, C. Lessons from the TOPCAT Trial. N. Engl. J. Med. 370, 1453–1454 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Pfeffer, M. A. et al. Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation 131, 34–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Manolio, T. A. & Collins, R. Enhancing the feasibility of large cohort studies. JAMA 304, 2290–2291 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  85. Selby, J. V., Krumholz, H. M., Kuntz, R. E. & Collins, F. S. Network news: powering clinical research. Sci. Transl Med. 5, 182fs13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Precision Medicine Initiative (PMI) Working Group. The Precision Medicine Initiative cohort program — building a research foundation for 21st century medicine. National Institutes of Health https://www.nih.gov/sites/default/files/research-training/initiatives/pmi/pmi-working-group-report-20150917-2.pdf (2015).

  87. Collins, F. S. & Varmus, H. A. New initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sorlie, P. D., Bild, D. E. & Lauer, M. S. Cardiovascular epidemiology in a changing world — challenges to investigators and the National Heart, Lung, and Blood Institute. Am. J. Epidemiol. 175, 597–601 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fabsitz, R. R. et al. Impact of National Heart, Lung, and Blood Institute-supported cardiovascular epidemiology research, 1998 to 2012. Circulation 132, 2028–2033 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Roger, V. L. et al. Strategic transformation of population studies: recommendations of the working group on epidemiology and population sciences From the National Heart, Lung, and Blood Advisory Council and Board of External Experts. Am. J. Epidemiol. 181, 363–368 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Riley, W., Nilsen, W., Manolio, T., Masys, D. & Lauer, M. News from the NIH: potential contributions of the behavioral and social sciences to the precision medicine initiative. Transl Behav. Med. 5, 243–246 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hlatky, M. A. et al. Use of Medicare data to identify coronary heart disease outcomes in the Women's Health Initiative. Circ. Cardiovasc. Qual. Outcomes 7, 157–162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ball, R., Robb, M., Anderson, S. A. & Dal Pan, G. The FDA's sentinel initiative — a comprehensive approach to medical product surveillance. Clin. Pharmacol. Ther. 99, 265–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Gliklich, R. E., Dreyer, N. A. & Leavy, M. B. (eds) Registries for Evaluating Patient Outcomes: A User's Guide 3rd edn (Agency for Healthcare Research and Quality (US), 2014).

    Google Scholar 

  95. National Heart, Lung and Blood Institute. Accrual of human subjects (milestones) policy. National Institutes of Health http://www.nhlbi.nih.gov/research/funding/human-subjects/accrual-guidelines (2009).

  96. Hofmann, R. et al. Determination of the role of oxygen in suspected acute myocardial infarction (DETO2X-AMI trial). Am. Heart J. 167, 322–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Luce, B. R. et al. Rethinking randomized clinical trials for comparative effectiveness research: the need for transformational change. Ann. Intern. Med. 151, 206–209 (2009).

    Article  PubMed  Google Scholar 

  98. Meurer, W. J. & Lewis, R. J. Cluster randomized trials: evaluating treatments applied to groups. JAMA 313, 2068–2069 (2015).

    Article  PubMed  Google Scholar 

  99. Ervin, A.-M., Taylor, H. A. & Ehrhardt, S. NIH policy on single-IRB review — a new era in multicenter studies. N. Engl. J. Med. 375, 2315–2317 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fleurence, R. L. et al. Engaging patients and stakeholders in research proposal review: the patient-centered outcomes research institute. Ann. Intern. Med. 161, 122–130 (2014).

    Article  PubMed  Google Scholar 

  101. Peters-Lawrence, M. H. et al. Clinical trial implementation and recruitment: lessons learned from the early closure of a randomized clinical trial. Contemp. Clin. Trials 33, 291–297 (2012).

    Article  PubMed  Google Scholar 

  102. Ioannidis, J. P. More time for research: fund people not projects. Nature 477, 529–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Ioannidis, J. P. & Khoury, M. J. Assessing value in biomedical research: the PQRST of appraisal and reward. JAMA 312, 483–484 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wagner, T. H., Murray, C., Goldberg, J., Adler, J. M. & Abrams, J. Costs and benefits of the National Cancer Institute central institutional review board. J. Clin. Oncol. 28, 662–666 (2010).

    Article  PubMed  Google Scholar 

  105. Zarin, D. A., Tse, T., Williams, R. J. & Carr, S. Trial reporting in ClinicalTrials.gov — the final rule. N. Engl. J. Med. 375, 1998–2004 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ioannidis, J. P. Contradicted and initially stronger effects in highly cited clinical research. JAMA 294, 218–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Taichman, D. B. et al. Sharing clinical trial data — a proposal from the International Committee of Medical Journal Editors. N. Engl. J. Med. 374, 384–386 (2016).

    Article  PubMed  Google Scholar 

  108. Warren, E. Strengthening research through data sharing. N. Engl. J. Med. 375, 401–403 (2016).

    Article  PubMed  Google Scholar 

  109. International Consortium of Investigators for Fairness in Trial Data Sharing. Toward fairness in data sharing. N. Engl. J. Med. 375, 405–407 (2016).

  110. Krumholz, H. M. & Waldstreicher, J. The Yale Open Data Access (YODA) Project — a mechanism for data sharing. N. Engl. J. Med. 375, 403–405 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Iain Cockburn of Boston University, USA, for sharing the data used for Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

M.S.L. researched data for the article. M.S.L. and G.W. wrote the manuscript. All the authors provided substantial contribution to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Michael S. Lauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauer, M., Gordon, D., Wei, G. et al. Efficient design of clinical trials and epidemiological research: is it possible?. Nat Rev Cardiol 14, 493–501 (2017). https://doi.org/10.1038/nrcardio.2017.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing