Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Muscle wasting and cachexia in heart failure: mechanisms and therapies

Key Points

  • Cardiac cachexia is defined as an advanced stage of heart failure associated with involuntary loss of at least 5% of non-oedematous body weight

  • Muscle wasting, also known as sarcopenia, can occur earlier than cachexia in the course of the body-wasting process and might not be associated with weight loss

  • Therapeutic approaches remain poorly defined, but can involve a combined approach of exercise, nutritional counselling, and pharmacotherapy

  • Nutritional advice includes avoiding excessive salt and fluid intake, replenishment of deficiencies in trace elements, administration of omega-3 polyunsaturated fatty acids, and high-calorific nutrition

  • Several drugs have been tested in small studies for the treatment of body wasting, with testosterone having the strongest evidence base, although the number of patients studied is small

Abstract

Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β2-adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways involved in muscle wasting in heart failure.
Figure 2: Muscle structure.
Figure 3: Muscle wasting and cachexia in heart failure.

Similar content being viewed by others

References

  1. Doehner, W. & Anker, S. D. Cardiac cachexia in early literature: a review of research prior to Medline. Int. J. Cardiol. 85, 7–14 (2002).

    Article  PubMed  Google Scholar 

  2. Rosenberg, I. H. Sarcopenia: origins and clinical relevance. Clin. Geriatr. Med. 27, 337–339 (2011).

    Article  PubMed  Google Scholar 

  3. Springer, J., von Haehling, S. & Anker, S. D. The need for a standardized definition for cachexia in chronic illness. Nat. Clin. Pract. Endocrinol. Metab. 2, 416–417 (2006).

    Article  PubMed  Google Scholar 

  4. Anker, S. D. et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349, 1050–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Anker, S. D. et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361, 1077–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Valentova, M. et al. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur. Heart J. 37, 1684–1691 (2016).

    Article  PubMed  Google Scholar 

  7. Rossignol, P. et al. Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur. J. Heart Fail. 17, 424–433 (2015).

    Article  PubMed  Google Scholar 

  8. von Haehling, S., Lainscak, M., Springer, J. & Anker, S. D. Cardiac cachexia: a systematic overview. Pharmacol. Ther. 121, 227–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Fearon, K. C. The Sir David Cuthbertson Medal Lecture 1991. The mechanisms and treatment of weight loss in cancer. Proc. Nutr. Soc. 51, 251–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Christensen, H. M. et al. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine 43, 626–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. von Haehling, S. & Anker, S. D. Prevalence, incidence and clinical impact of cachexia: facts and numbers — update 2014. J. Cachexia Sarcopenia Muscle 5, 261–263 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bekfani, T. et al. Sarcopenia in patients with heart failure with preserved ejection fraction: impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 222, 41–46 (2016).

    Article  PubMed  Google Scholar 

  14. Fülster, S. et al. Muscle wasting in patients with chronic heart failure: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur. Heart J. 34, 512–519 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Santilli, V., Bernetti, A., Mangone, M. & Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 11, 177–180 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Morley, J. E. et al. Sarcopenia with limited mobility: an international consensus. J. Am. Med. Dir. Assoc. 12, 403–409 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muscaritoli, M. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 29, 154–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Fielding, R. A. et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011).

    Article  PubMed  Google Scholar 

  19. Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39, 412–423 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dam, T. T. et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 69, 584–590 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nedergaard, A., Karsdal, M. A., Sun, S. & Henriksen, K. Serological muscle loss biomarkers: an overview of current concepts and future possibilities. J. Cachexia Sarcopenia Muscle 4, 1–17 (2013).

    Article  PubMed  Google Scholar 

  22. Calvani, R. et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J. Cachexia Sarcopenia Muscle 6, 278–286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Drescher, C., Konishi, M., Ebner, N. & Springer, J. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J. Cachexia Sarcopenia Muscle 6, 303–311 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsuo, Y. et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J. Cachexia Sarcopenia Muscle 6, 62–72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Steinbeck, L. et al. Detection of muscle wasting in patients with chronic heart failure using C-terminal agrin fragment: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur. J. Heart Fail. 17, 1283–1293 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Narici, M. V. & Maffulli, N. Sarcopenia: characteristics, mechanisms and functional significance. Br. Med. Bull. 95, 139–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Abellan van Kan, G. Epidemiology and consequences of sarcopenia. J. Nutr. Health Aging 13, 708–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Doherty, T. J. Invited review: aging and sarcopenia. J. Appl. Physiol. 95, 1717–1727 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Morley, J. E., Kim, M. J., Haren, M. T., Kevorkian, R. & Banks, W. A. Frailty and the aging male. Aging Male 8, 135–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Morley, J. E., Anker, S. D. & von Haehling, S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology — update 2014. J. Cachexia Sarcopenia Muscle 5, 253–259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anker, S. D. et al. Muscle wasting disease: a proposal for a new disease classification. J. Cachexia Sarcopenia Muscle 5, 1–3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Narumi, T. et al. Sarcopenia evaluated by fat-free mass index is an important prognostic factor in patients with chronic heart failure. Eur. J. Intern. Med. 26, 118–122 (2015).

    Article  PubMed  Google Scholar 

  33. von Haehling, S. The wasting continuum in heart failure: from sarcopenia to cachexia. Proc. Nutr. Soc. 74, 367–377 (2015).

    Article  PubMed  Google Scholar 

  34. Anker, S. D. et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur. Heart J. 20, 683–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Pinheiro, P. A., Carneiro, J. A., Coqueiro, R. S., Pereira, R. & Fernandes, M. H. “Chair stand test” as simple tool for sarcopenia screening in elderly women. J. Nutr. Health Aging 20, 56–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Woo, J., Leung, J. & Morley, J. E. Validating the SARC-F: a suitable community screening tool for sarcopenia? J. Am. Med. Dir. Assoc. 15, 630–634 (2014).

    Article  PubMed  Google Scholar 

  37. Ishii, S. et al. Development of a simple screening test for sarcopenia in older adults. Geriatr. Gerontol. Int. 14 (Suppl. 1), 93–101 (2014).

    Article  PubMed  Google Scholar 

  38. Josiak, K., Jankowska, E. A., Piepoli, M. F., Banasiak, W. & Ponikowski, P. Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J. Cachexia Sarcopenia Muscle 5, 287–296 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Anker, S. D. & Morley, J. E. Cachexia: a nutritional syndrome? J. Cachexia Sarcopenia Muscle 6, 269–271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yeo, G. S. & Heisler, S. K. Unravelling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Date, Y. et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255–4261 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Arvat, E. et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J. Clin. Endocrinol. Metab. 86, 1169–1174 (2001).

    CAS  PubMed  Google Scholar 

  43. Lund, L. H. et al. Ghrelin resistance occurs in severe heart failure and resolves after heart transplantation. Eur. J. Heart Fail. 11, 789–794 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagaya, N. et al. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation 104, 2034–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Stofkova, A. Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr. Regul. 43, 157–168 (2009).

    CAS  PubMed  Google Scholar 

  46. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Klok, M. D., Jakobsdottir, S. & Drent, M. L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes. Rev. 8, 21–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ho, K. K., O'Sullivan, A. J. & Hoffman, D. M. Metabolic actions of growth hormone in man. Endocr. J. 43 (Suppl.), S57–S63 (1996).

    CAS  PubMed  Google Scholar 

  49. Rudman, D. et al. Impaired growth hormone secretion in the adult population: relation to age and adiposity. J. Clin. Invest. 67, 1361–1369 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iranmanesh, A., Lizarralde, G. & Veldhuis, J. D. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J. Clin. Endocrinol. Metab. 73, 1081–1088 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Giustina, A. & Veldhuis, J. D. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998).

    CAS  PubMed  Google Scholar 

  52. Tirapegui, J. Effect of insulin-like growth factor-1 (IGF-1) on muscle and bone growth in experimental models. Int. J. Food Sci. Nutr. 50, 231–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Morley, J. E., Thomas, D. R. & Wilson, M. M. Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Sattler, F. R. Growth hormone in the aging male. Best Pract. Res. Clin. Endocrinol. Metab. 27, 541–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anker, S. D. et al. Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J. Am. Coll. Cardiol. 38, 443–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Cicoira, M., Kalra, P. R. & Anker, S. D. Growth hormone resistance in chronic heart failure and its therapeutic implications. J. Card. Fail. 9, 219–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. David, K., Dingemanse, E., Freud, J. & Laqueur, E. Über krystallinisches männliches Hormon aus Hoden (Testosteron) wirksamer als aus harn oder aus Cholesterin bereitetes Androsteron [German]. Hoppe-Seyler's Z. Physiol. Chem. 233, 281 (1935).

    Article  CAS  Google Scholar 

  58. Urban, R. J. et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am. J. Physiol. 269, E820–E826 (1995).

    CAS  PubMed  Google Scholar 

  59. Urban, R. J. Effects of testosterone and growth hormone on muscle function. J. Lab. Clin. Med. 134, 7–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Pugh, P. J., Jones, T. H. & Channer, K. S. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur. Heart J. 24, 909–915 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Pugh, P. J., Jones, R. D., West, J. N., Jones, T. H. & Channer, K. S. Testosterone treatment for men with chronic heart failure. Heart 90, 446–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Malkin, C. J. et al. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur. Heart J. 27, 57–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Caminiti, G. et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J. Am. Coll. Cardiol. 54, 919–927 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Iellamo, F. et al. Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J. Am. Coll. Cardiol. 56, 1310–1316 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Okita, K., Kinugawa, S. & Tsutsui, H. Exercise intolerance in chronic heart failure — skeletal muscle dysfunction and potential therapies. Circ. J. 77, 293–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Coats, A. J., Clark, A. L., Piepoli, M., Volterrani, M. & Poole-Wilson, P. A. Symptoms and quality of life in heart failure: the muscle hypothesis. Br. Heart J. 72, S36–S39 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rezk, B. M. et al. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy. PLoS ONE 7, e30276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Springer, J. et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur. Heart J. 35, 932–941 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Pedroso, F. E. et al. Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. J. Cachexia Sarcopenia Muscle 3, 199–211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Elkina, Y. et al. Tandospirone reduces wasting and improves cardiac function in experimental cancer cachexia. Int. J. Cardiol. 170, 160–166 (2013).

    Article  PubMed  Google Scholar 

  71. Elkina, Y., von Haehling, S., Anker, S. D. & Springer, J. The role of myostatin in muscle wasting: an overview. J. Cachexia Sarcopenia Muscle 2, 143–151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Egerman, M. A. & Glass, D. J. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49, 59–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rommel, C. et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 3, 1009–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Trendelenburg, A. U. et al. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296, C1258–C1270 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Han, H. Q. & Mitch, W. E. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr. Opin. Support. Palliat. Care 5, 334–341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Breitbart, A., Auger-Messier, M., Molkentin, J. D. & Heineke, J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am. J. Physiol. Heart Circ. Physiol. 300, H1973–H1982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. George, I. et al. Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur. J. Heart Fail. 12, 444–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gruson, D., Ahn, S. A., Ketelslegers, J. M. & Rousseau, M. F. Increased plasma myostatin in heart failure. Eur. J. Heart Fail. 13, 734–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Tobin, J. F. & Celeste, A. J. Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases. Curr. Opin. Pharmacol. 5, 328–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Glass, D. J. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Marmor, M. D. & Yarden, Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23, 2057–2070 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Passmore, L. A. & Barford, D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379, 513–525 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Urso, M. L. et al. Alterations in mRNA expression and protein products following spinal cord injury in humans. J. Physiol. 579, 877–892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mangner, N. et al. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm. J. Cachexia Sarcopenia Muscle 6, 381–390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Franch, H. A. & Price, S. R. Molecular signaling pathways regulating muscle proteolysis during atrophy. Curr. Opin. Clin. Nutr. Metab. Care 8, 271–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Cohen, S. et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J. Cell Biol. 185, 1083–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tintignac, L. A. et al. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J. Biol. Chem. 280, 2847–2856 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Lagirand-Cantaloube, J. et al. The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J. 27, 1266–1276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cai, D. et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Sishi, B. J. & Engelbrecht, A. M. Tumor necrosis factor alpha (TNF-α) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine 54, 173–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Levine, B., Kalman, J., Mayer, L., Fillit, H. M. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Li, Y. P. et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19, 362–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Castillero, E., Alamdari, N., Lecker, S. H. & Hasselgren, P. O. Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes. Metabolism 62, 1495–1502 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Kudryashova, E., Kudryashov, D., Kramerova, I. & Spencer, M. J. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J. Mol. Biol. 354, 413–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. An, C. I., Ganio, E. & Hagiwara, N. Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells. Skelet. Muscle 3, 11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paul, P. K. et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol. 191, 1395–1411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schiaffino, S. & Hanzlíková, V. Studies on the effect of denervation in developing muscle. II. The lysosomal system. J. Ultrastruct. Res. 39, 1–14 (1972).

    Article  CAS  PubMed  Google Scholar 

  102. Deval, C. et al. Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem. J. 360, 143–150 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sandri, M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 45, 2121–2129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonaldo, P. & Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25–39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Grumati, P. et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 7, 1415–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jamart, C. et al. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J. Appl. Physiol. 112, 1529–1537 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Gonzalez, C. D. et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 7, 2–11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moylan, J. S. & Reid, M. B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35, 411–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Jamart, C. et al. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise. Eur. J. Appl. Physiol. 112, 3173–3177 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Malicdan, M. C., Noguchi, S., Nonaka, I., Saftig, P. & Nishino, I. Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul. Disord. 18, 521–529 (2008).

    Article  PubMed  Google Scholar 

  112. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sanchez, A. M. J. et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with ULK1. J. Cell. Biochem. 113, 695–710 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Fujita, N., Fujino, H., Sakamoto, H., Takegaki, J. & Deie, M. Time course of ubiquitin-proteasome and macroautophagy-lysosome pathways in skeletal muscle in rats with heart failure. Biomed. Res. 36, 383–392 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Jannig, P. R. et al. Autophagy signaling in skeletal muscle of infarcted rats. PLoS ONE 9, e85820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Adams, V. et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J. Am. Coll. Cardiol. 33, 959–965 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Vescovo, G. et al. Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart 84, 431–437 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Knezevic, T. et al. BAG3: a new player in the heart failure paradigm. Heart Fail. Rev. 20, 423–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vescovo, G. & Dalla Libera, L. Skeletal muscle apoptosis in experimental heart failure: the only link between inflammation and skeletal muscle wastage? Curr. Opin. Clin. Nutr. Metab. Care 9, 416–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Dirks, A. J. & Leeuwenburgh, C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med. 35, 473–483 (2005).

    Article  PubMed  Google Scholar 

  121. Hultman, E. Fuel selection, muscle fibre. Proc. Nutr. Soc. 54, 107–121 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Carmeli, E. & Reznick, A. Z. The physiology and biochemistry of skeletal muscle atrophy as a function of age. Proc. Soc. Exp. Biol. Med. 206, 103–113 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Daugaard, J. R. & Richter, E. A. Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus. Acta Physiol. Scand. 171, 267–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. von Haehling, S., Genth-Zotz, S., Anker, S. D. & Volk, H. D. Cachexia: a therapeutic approach beyond cytokine antagonism. Int. J. Cardiol. 85, 173–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Voltarelli, V. A. et al. Lack of β2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice. J. Cell. Mol. Med. 18, 1087–1097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lynch, G. S. & Ryall, J. G. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol. Rev. 88, 729–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Cunha, T. F. et al. Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS ONE 7, e41701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bacurau, A. V. et al. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J. Appl. Physiol. 106, 1631–1640 (2009).

    Article  PubMed  Google Scholar 

  129. Gielen, S. et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study. Circulation 125, 2716–2727 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18, 891–975 (2016).

    Article  PubMed  Google Scholar 

  131. Yancy, C. W. et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J. Card. Fail. 22, 659–669 (2016).

    Article  Google Scholar 

  132. Hryniewicz, K., Androne, A. S., Hudaihed, A. & Katz, S. D. Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J. Card. Fail. 9, 464–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Saitoh, M. et al. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from the studies investigating co-morbidities aggravating heart failure. Wien. Klin. Wochenschr. 128, 497–504 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Tavazzi, L. et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, doubleblind, placebo-controlled trial. Lancet 372, 1223–1230 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Payne-Emerson, H. & Lennie, T. A. Nutritional considerations in heart failure. Nurs. Clin. North Am. 43, 117–132 (2008).

    Article  PubMed  Google Scholar 

  136. Macchi, A. et al. The role of essential amino acid supplementation in chronic heart failure [abstract]. Eur. Heart J. 30 (Suppl.), 869 (2009).

    Google Scholar 

  137. von Haehling, S., Doehner, W. & Anker, S. D. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc. Res. 73, 298–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Doukky, R. et al. Impact of dietary sodium restriction on heart failure outcomes. JACC Heart Fail. 4, 24–35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Witte, K. K. et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur. Heart J. 26, 2238–2244 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Mehra, M. R., Lavie, C. J., Ventura, H. O. & Milani, R. V. Fish oils produce anti-inflammatory effects and improve body weight in severe heart failure. J. Heart Lung Transplant. 25, 834–838 (2006).

    Article  PubMed  Google Scholar 

  141. Scognamiglio, R. et al. Effects of oral amino acid supplements on cardiac function and remodeling in patients with type 2 diabetes with mild-to-moderate left ventricular dysfunction. Am. J. Cardiol. 101, 111E–115E (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Liu, H. et al. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2. Amino Acids 46, 1971–1979 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Aquilani, R. et al. Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur. J. Heart Fail. 10, 1127–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Aquilani, R. et al. Oral amino acid supplements improve exercise capacities in elderly patients with chronic heart failure. Am. J. Cardiol. 101, 104E–110E (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Pineda-Juárez, J. A. et al. Changes in body composition in heart failure patients after a resistance exercise program and branched chain amino acid supplementation. Clin. Nutr. 35, 41–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Okoshi, M. P., Romeiro, F. G., Paiva, S. A. & Okoshi, K. Heart failure-induced cachexia. Arq. Bras. Cardiol. 100, 476–482 (2013).

    PubMed  Google Scholar 

  147. Rozentryt, P. et al. The effects of a high-caloric protein-rich oral nutritional supplement in patients with chronic heart failure and cachexia on quality of life, body composition, and inflammation markers: a randomized, double-blind pilot study. J. Cachexia Sarcopenia Muscle 1, 35–42 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Piepoli, M. F., Davos, C., Francis, D. P., Coats, A. J. & ExTraMATCH Collaborative. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328, 189 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Gielen, S. et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J. Am. Coll. Cardiol. 42, 861–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Höllriegel, R. et al. Anabolic effects of exercise training in patients with advanced chronic heart failure (NYHA IIIb): impact on ubiquitin-protein ligases expression and skeletal muscle size. Int. J. Cardiol. 167, 975–980 (2013).

    Article  PubMed  Google Scholar 

  151. Lenk, K. et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur. J. Prev. Cardiol. 19, 404–411 (2012).

    Article  PubMed  Google Scholar 

  152. Pu, C. T. et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J. Appl. Physiol. 90, 2341–2350 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Stout, M. et al. Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study. Am. Heart J. 164, 893–901 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Kjekshus, J. et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 357, 2248–2261 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Sanders, P. M., Russell, S. T. & Tisdale, M. J. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br. J. Cancer 93, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Russell, S. T., Sanders, P. M. & Tisdale, M. J. Angiotensin II directly inhibits protein synthesis in murine myotubes. Cancer Lett. 231, 290–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Lainscak, M., Keber, I. & Anker, S. D. Body composition changes in patients with systolic heart failure treated with beta blockers: a pilot study. Int. J. Cardiol. 106, 319–322 (2006).

    Article  PubMed  Google Scholar 

  160. Jankowska, E. A. et al. Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J. Card. Fail. 15, 442–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Baggish, A. L. et al. Long-term anabolic-androgenic steroid use is associated with left ventricular dysfunction. Circ. Heart Fail. 3, 472–476 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Toma, M. et al. Testosterone supplementation in heart failure: a meta-analysis. Circ. Heart Fail. 5, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Fazio, S. et al. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N. Engl. J. Med. 334, 809–814 (1996).

    Article  CAS  PubMed  Google Scholar 

  164. Isgaard, J. et al. A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur. Heart J. 19, 1704–1711 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Osterziel, K. J. et al. Randomised, double blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351, 1233–1237 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Nagaya, N. et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110, 3674–3679 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Temel, J. S. et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 17, 519–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Woodhouse, L. et al. Phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in patients undergoing elective total hip arthroplasty. J. Frailty Aging 5, 62–70 (2016).

    CAS  PubMed  Google Scholar 

  169. Becker, C. et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 3, 948–957 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Grant, A. L., Skjaerlund, D. M., Helferich, W. G., Bergen, W. G. & Merkel, R. A. Skeletal muscle growth and expression of skeletal muscle alpha-actin mRNA and insulin-like growth factor I mRNA in pigs during feeding and withdrawal of ractopamine. J. Anim. Sci. 71, 3319–3326 (1993).

    Article  CAS  PubMed  Google Scholar 

  171. Rothwell, N. J., Stock, M. J. & Sudera, D. K. Changes in tissue blood flow and beta-receptor density of skeletal muscle in rats treated with the beta2-adrenoceptor agonist clenbuterol. Br. J. Pharmacol. 90, 601–607 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mettauer, B., Rouleau, J. L. & Burgess, J. H. Detrimental arrhythmogenic and sustained beneficial hemodynamic effects of oral salbutamol in patients with chronic congestive heart failure. Am. Heart J. 109, 840–847 (1985).

    Article  CAS  PubMed  Google Scholar 

  173. Harrington, D., Chua, T. P. & Coats, A. J. The effect of salbutamol on skeletal muscle in chronic heart failure. Int. J. Cardiol. 73, 257–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Kamalakkannan, G. et al. Clenbuterol increases lean muscle mass but not endurance in patients with chronic heart failure. J. Heart Lung Transplant. 27, 457–461 (2008).

    Article  PubMed  Google Scholar 

  175. Calabrese, L. & Resztak, K. Thalidomide revisited: pharmacology and clinical applications. Expert Opin. Investig. Drugs 7, 2043–2060 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Sheskin, J. Thalidomide in the treatment of lepra reactions. Clin. Pharmacol. Ther. 6, 303–306 (1965).

    Article  CAS  PubMed  Google Scholar 

  177. Agoston, I. et al. Preclinical and clinical assessment of the safety and potential efficacy of thalidomide in heart failure. J. Card. Fail. 8, 306–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Moreira, A. L. et al. Thalidomide exerts its inhibitory action on tumor necrosis factor by enhancing mRNA degradation. J. Exp. Med. 177, 1675–1680 (1993).

    Article  CAS  PubMed  Google Scholar 

  179. Gullestad, L. et al. Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation 112, 3408–3414 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Dei Cas, A., Muoio, A. & Zavaroni, I. Chronic heart failure and cachexia: role of endocrine system [Italian]. Minerva Cardioangiol. 59, 601–612 (2011).

    CAS  PubMed  Google Scholar 

  181. Hulting, J., Sollevi, A., Ullman, B., Franco-Cereceda, A. & Lundberg, J. M. Plasma neuropeptide Y on admission to a coronary care unit: raised levels in patients with left heart failure. Cardiovasc. Res. 24, 102–108 (1990).

    Article  CAS  PubMed  Google Scholar 

  182. Scarlett, J. M. et al. Genetic and pharmacologic blockade of central melanocortin signaling attenuates cardiac cachexia in rodent models of heart failure. J. Endocrinol. 206, 121–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lindberg, S. et al. Cardio-adipose tissue cross-talk: relationship between adiponectin, plasma pro brain natriuretic peptide and incident heart failure. Eur. J. Heart Fail. 16, 633–638 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Araújo, J. P., Lourenço, P., Rocha-Gonçalves, F., Ferreira, A. & Bettencourt, P. Adiponectin is increased in cardiac cachexia irrespective of body mass index. Eur. J. Heart Fail. 11, 567–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Szabó, T. et al. Plasma adiponectin in heart failure with and without cachexia: catabolic signal linking catabolism, symptomatic status, and prognosis. Nutr. Metab. Cardiovasc. Dis. 24, 50–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. McEntegart, M. B. et al. Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur. Heart J. 28, 829–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Cabello-Verrugio, C., Córdova, G. & Salas, J. D. Angiotensin II: role in skeletal muscle atrophy. Curr. Protein Pept. Sci. 13, 560–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Ebner, N., Elsner, S., Springer, J. & von Haehling, S. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview. Curr. Opin. Support. Palliat. Care 8, 15–24 (2014).

    Article  PubMed  Google Scholar 

  189. Murdoch, D. R. et al. Inappropriately low plasma leptin concentration in the cachexia associated with chronic heart failure. Heart 82, 352–356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schulze, P. C. et al. Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. Eur. J. Heart Fail. 5, 33–40 (2003).

    Article  PubMed  Google Scholar 

  191. Bowen, T. S., Schuler, G. & Adams, V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 6, 197–207 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Thomas, M. et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275, 40235–40243 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Biesemann, N. et al. Myostatin regulates energy homeostasis in the heart and prevents heart failure. Circ. Res. 115, 296–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Rauchhaus, M. et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102, 3060–3067 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. Sandri, M. et al. Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) diastolic dysfunction study. Eur. Heart J. 33, 1758–1768 (2012).

    Article  PubMed  Google Scholar 

  196. O'Connor, C. M. et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301, 1439–1450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Preparation of this manuscript was partly funded by a grant from the Innovative Medicines Initiative – Joint Undertaking (IMI-JU 115621). M.R.d.S. was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 234052/2014-7).

Author information

Authors and Affiliations

Authors

Contributions

S.v.H. researched data for the article and wrote the manuscript. J.S. and S.D.A. provided substantial contribution to the discussion of content. N.E., M.R.d.S., J.S., and S.D.A. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Stephan von Haehling.

Ethics declarations

Competing interests

S.v.H. has received consulting honoraria from Chugai, Pfizer, Professional Dietetics, Respicardia, Solartium Dietetics, Sorin, Thermo Fisher Scientific, and Vifor Pharma; as well as lecture fees from Amgen and Novartis. S.D.A. has received consulting fees from Abbott Laboratories, Alere, BRAHMS GmbH, and Vifor Pharma; honoraria from Alere, BRAHMS GmbH, and Vifor Pharma; and research support from BRAHMS GmbH. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Haehling, S., Ebner, N., dos Santos, M. et al. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 14, 323–341 (2017). https://doi.org/10.1038/nrcardio.2017.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing