Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-sensitivity assays for troponin in patients with cardiac disease

Key Points

  • Troponin is a widely used biomarker in patients with cardiac disease

  • High-sensitivity assays enable the detection of very low concentrations of troponin

  • Rapid diagnostic strategies for patients with suspected acute myocardial infarction have been introduced

  • Noncoronary and nonacute applications of troponin assays are on the horizon, and might improve individual risk stratification

Abstract

Troponin is a widely used biomarker in patients with cardiac disease. The use of troponin is well established in patients with suspected acute myocardial infarction (AMI), but troponin measurement is also used in other acute and nonacute settings. In patients with suspected AMI, early decision-making is crucial to allow rapid treatment and further diagnostic evaluation. Current guidelines recommend serial measurements of troponin with a cut-off concentration at the 99th percentile to triage patients in the emergency department. Newer, high-sensitivity assays for troponin enable the detection of distinctly lower concentrations. Using these assays and very low cut-off concentrations, several rapid diagnostic strategies have been reported to improve diagnosis in acute cardiac care. Furthermore, noncoronary and nonacute applications of troponin assays — for example as a biomarker in patients with heart failure, pulmonary embolism, or stable coronary artery disease — are on the horizon and might improve individual risk stratification. In this Review, we provide an overview on the development of high-sensitivity assays for troponin, and their application in patients with cardiac disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pathophysiological background of troponin and troponin release in different settings.
Figure 2: ESC algorithm for diagnosis of acute myocardial infarction (AMI) with a 0/1-h approach and measurement of troponin using a high-sensitivity assay.
Figure 3: Myocardial infarction and troponin release.

References

  1. Roffi, M. et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 37, 267–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Nawar, E. W., Niska, R. W. & Xu, J. National hospital ambulatory medical care survey: 2005 emergency department summary. Adv. Data 386, 1–32 (2007).

    Google Scholar 

  3. Goodacre, S. et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol. Assess. 17, 1–188 (2013).

    Article  Google Scholar 

  4. Thygesen, K. et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur. Heart J. 33, 2252–2257 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. de Lemos, J. A. Increasingly sensitive assays for cardiac troponins: a review. JAMA 309, 2262–2269 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Giannitsis, E. & Katus, H. A. Cardiac troponin level elevations not related to acute coronary syndromes. Nat. Rev. Cardiol. 10, 623–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Thygesen, K. et al. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 9, 620–233 (2012).

    Article  PubMed  Google Scholar 

  8. Takeda, S., Yamashita, A., Maeda, K. & Maeda, Y. Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Parmacek, M. S. & Solaro, R. J. Biology of the troponin complex in cardiac myocytes. Prog. Cardiovasc. Dis. 47, 159–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Jaffe, A. S. et al. Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J. Am. Coll. Cardiol. 58, 1819–1824 (2011).

    Article  PubMed  Google Scholar 

  11. Cummins, B., Auckland, M. L. & Cummins, P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am. Heart J. 113, 1333–1344 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Katus, H. A. et al. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J. Mol. Cell. Cardiol. 21, 1349–1353 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Katus, H. A. et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin. Chem. 38, 386–393 (1992).

    CAS  PubMed  Google Scholar 

  14. Hamm, C. W. et al. The prognostic value of serum troponin T in unstable angina. N. Engl. J. Med. 327, 146–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Muller-Bardorff, M. et al. Improved troponin T ELISA specific for cardiac troponin T isoform: assay development and analytical and clinical validation. Clin. Chem. 43, 458–466 (1997).

    CAS  PubMed  Google Scholar 

  16. Hetland, O. & Dickstein, K. Cardiac troponin T by Elecsys system and a rapid ELISA: analytical sensitivity in relation to the TropT (CardiacT) “bedside” test. Clin. Chem. 44, 1348–1350 (1998).

    CAS  PubMed  Google Scholar 

  17. Alpert, J. S., Thygesen, K., Antman, E. & Bassand, J. P. Myocardial infarction redefined — a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J. Am. Coll. Cardiol. 36, 959–969 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hallermayer, K., Klenner, D. & Vogel, R. Use of recombinant human cardiac troponin T for standardization of third generation troponin T methods. Scand. J. Clin. Lab. Invest. Suppl. 230, 128–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Hermsen, D. et al. Results from a multicenter evaluation of the 4th generation Elecsys troponin T assay. Clin. Lab. 53, 1–9 (2007).

    CAS  PubMed  Google Scholar 

  20. Reichlin, T. et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J. Am. Coll. Cardiol. 54, 60–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Mingels, A. et al. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin. Chem. 55, 101–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Giannitsis, E. et al. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 56, 254–261 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Schmacht, L. et al. Cardiac involvement in myotonic dystrophy type 2 patients with preserved ejection fraction: detection by cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 9, e004615 (2016).

    Article  PubMed  Google Scholar 

  24. Bodor, G. S., Porter, S., Landt, Y. & Ladenson, J. H. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin. Chem. 38, 2203–2214 (1992).

    CAS  PubMed  Google Scholar 

  25. Adams, J. E. et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 88, 101–106 (1993).

    Article  PubMed  Google Scholar 

  26. International Federation of Clinical Chemistry and Laboratory Medicine. Analytical characteristics of commercial cardiac troponin I and T assays declared by the manufacturer. IFCC http://www.ifcc.org/media/276664/IFCC%20Troponin%20Tables%20ug_L_DRAFT%20Update%20NOVEMBER%202014.pdf (2014).

  27. Apple, F. S. Counterpoint: standardization of cardiac troponin I assays will not occur in my lifetime. Clin. Chem. 58, 169–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Apple, F. S., Collinson, P. O. & IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 58, 54–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Apple, F. S., Ler, R. & Murakami, M. M. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin. Chem. 58, 1574–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Saenger, A. K. et al. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clin. Chim. Acta 412, 748–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Koerbin, G., Tate, J. R. & Hickman, P. E. Analytical characteristics of the Roche highly sensitive troponin T assay and its application to a cardio-healthy population. Ann. Clin. Biochem. 47, 524–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Chenevier-Gobeaux, C., Bailleul, S., Mzabi, A., Blanc, M. C. & Lefevre, G. Upper reference limits of high-sensitivity cardiac troponin T in a general population: comparison with those of sensitive cardiac troponin I. Clin. Lab. 59, 333–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Collinson, P. O. et al. Influence of population selection on the 99th percentile reference value for cardiac troponin assays. Clin. Chem. 58, 219–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Sandoval, Y., Smith, S. W. & Apple, F. S. Present and future of cardiac troponin in clinical practice: a paradigm shift to high-densitivity assays. Am. J. Med. 129, 354–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Adamczyk, M., Brashear, R. J. & Mattingly, P. G. Coprevalence of autoantibodies to cardiac troponin I and T in normal blood donors. Clin. Chem. 56, 676–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Pettersson, K. et al. Autoantibodies to cardiac troponin associate with higher initial concentrations and longer release of troponin I in acute coronary syndrome patients. Clin. Chem. 55, 938–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Savukoski, T. et al. Troponin-specific autoantibody interference in different cardiac troponin I assay configurations. Clin. Chem. 58, 1040–1048 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Warner, J. V. & Marshall, G. A. High incidence of macrotroponin I with a high-sensitivity troponin I assay. Clin. Chem. Lab. Med. 54, 1821–1829 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. US Food & Drug Administration. 510(k) substantial equivalence determination decision summary. FDA http://www.accessdata.fda.gov/cdrh_docs/reviews/K162895.pdf (2017).

  40. Bassand, J.-P. et al. Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: the task force for diagnosis and treatment of non-ST-segment elevation acute coronary syndromes of the European Society of Cardiology. Eur. Heart J. 28, 1598–1660 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Reichlin, T. et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J. Med. 361, 858–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Keller, T. et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 306, 2684–2693 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Hamm, C. W. et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation. Eur. Heart J. 32, 2999–3054 (2011).

    Article  PubMed  Google Scholar 

  45. Than, M. et al. 2-hour accelerated diagnostic protocol to assess patients with chest pain symptoms using contemporary troponins as the only biomarker: the ADAPT trial. J. Am. Coll. Cardiol. 59, 2091–2098 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Rubini Gimenez, M. et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am. J. Med. 128, 861–870.e4 (2015).

    Article  PubMed  Google Scholar 

  47. Mokhtari, A. et al. A 1- h combination algorithm allows fast rule-out and rule-in of major adverse cardiac events. J. Am. Coll. Cardiol. 67, 1531–1540 (2016).

    Article  PubMed  Google Scholar 

  48. Mueller, C. et al. Multicenter evaluation of a 0-hour/1-hour algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T. Ann. Emerg. Med. 68, 76–87.e4 (2016).

    Article  PubMed  Google Scholar 

  49. Neumann, J. T. et al. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol. 1, 397–404 (2016).

    Article  PubMed  Google Scholar 

  50. Zeller, T. et al. High-sensitivity cardiac troponin I in the general population — defining reference populations for the determination of the 99th percentile in the Gutenberg Health Study. Clin. Chem. Lab. Med. 53, 699–706 (2014).

    Google Scholar 

  51. Sörensen, N. A. et al. Challenging the 99th percentile: a lower troponin cutoff leads to low mortality of chest pain patients. Int. J. Cardiol. 232, 289–293 (2017).

    Article  PubMed  Google Scholar 

  52. Bandstein, N., Ljung, R., Johansson, M. & Holzmann, M. J. Undetectable high sensitivity cardiac troponin T level in the emergency department and risk of myocardial infarction. J. Am. Coll. Cardiol. 63, 2569–2578 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Shah, A. S. et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet 386, 2481–2488 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Carlton, E. et al. Evaluation of high-sensitivity cardiac troponin I levels in patients with suspected acute coronary syndrome. JAMA Cardiol. 1, 405–412 (2016).

    Article  PubMed  Google Scholar 

  55. Neumann, J. T. et al. Immediate rule-out of acute myocardial infarction using electrocardiogram and baseline high-sensitivity troponin I. Clin. Chem. 63, 394–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Sandoval, Y. et al. Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin I measurement. Clin. Chem. 63, 369–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Nestelberger, T. et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0 h/1h-algorithm for the early diagnosis of acute myocardial infarction. Int. J. Cardiol. 207, 238–245 (2016).

    Article  PubMed  Google Scholar 

  58. Crea, F. et al. Should the 1 h algorithm for rule in and rule out of acute myocardial infarction be used universally? Eur. Heart J. 37, 3316–3323 (2016).

    Article  PubMed  Google Scholar 

  59. Jaeger, C. et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am. Heart J. 171, 92–102.e5 (2016).

    Article  PubMed  Google Scholar 

  60. Pickering, J. W. et al. Assessment of the European Society of Cardiology 0 hour/1 hour algorithm to rule out and rule in acute myocardial infarction. Circulation 134, 1532–1541 (2016).

    Article  PubMed  Google Scholar 

  61. Cullen, L. A. & Mills, N. L. The use of sex-specific cutpoints for high-sensitivity cardiac troponin assays. Clin. Chem. 63, 261–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Giannitsis, E. Potential voncerns regarding the use of sex-specific cutpoints for high-sensitivity troponin assays. Clin. Chem. 63, 264–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Rubini Gimenez, M. et al. Clinical effect of sex-specific cutoff values of high-sensitivity cardiac troponin T in suspected myocardial infarction. JAMA Cardiol. 1, 912–920 (2016).

    Article  PubMed  Google Scholar 

  64. Shah, A. S. V. et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ 350, g7873 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Apple, F. S., Sandoval, Y., Jaffe, A. S. & Ordonez-Llanos, J. Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin. Chem. 63, 73–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Gore, M. O. et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J. Am. Coll. Cardiol. 63, 1441–1448 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Normann, J. et al. Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am. Heart J. 164, 698–705.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Reiter, M. et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur. Heart J. 32, 1379–1389 (2011).

    Article  PubMed  Google Scholar 

  69. Pfortmueller, C. A. et al. Diagnostic performance of high-sensitive troponin T in patients with renal insufficiency. Am. J. Cardiol. 112, 1968–1972 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Twerenbold, R. et al. Optimal cutoff levels of more sensitive cardiac troponin assays for the early diagnosis of myocardial infarction in patients with renal dysfunction. Circulation 131, 2041–2050 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Javed, U. et al. Frequency of elevated troponin I and diagnosis of acute myocardial infarction. Am. J. Cardiol. 104, 9–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Ng, S. M. et al. Mitigation of the clinical significance of spurious elevations of cardiac troponin I in settings of coronary ischemia using serial testing of multiple cardiac markers. Am. J. Cardiol. 87, 994–999 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Thygesen, K. et al. Universal definition of myocardial infarction. Circulation 116, 2634–2653 (2007).

    Article  PubMed  Google Scholar 

  74. Milosevic, A. et al. Immediate versus delayed invasive intervention for non-STEMI patients: the RIDDLE-NSTEMI study. JACC Cardiovasc. Interv. 9, 541–549 (2016).

    Article  PubMed  Google Scholar 

  75. Wallentin, L. et al. Early invasive versus non-invasive treatment in patients with non-ST-elevation acute coronary syndrome (FRISC-II): 15 year follow-up of a prospective, randomised, multicentre study. Lancet 388, 1903–1911 (2016).

    Article  PubMed  Google Scholar 

  76. Hijazi, Z., Oldgren, J., Siegbahn, A., Granger, C. B. & Wallentin, L. Biomarkers in atrial fibrillation: a clinical review. Eur. Heart J. 34, 1475–1480 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Landes, U. et al. Type 2 myocardial infarction: a descriptive analysis and comparison with type 1 myocardial infarction. J. Cardiol. 67, 51–56 (2016).

    Article  PubMed  Google Scholar 

  78. Sandoval, Y., Smith, S. W. & Apple, F. S. Ongoing challenges with type 2 myocardial infarction. Am. J. Med. 129, e155 (2016).

    Article  PubMed  Google Scholar 

  79. Saaby, L. et al. Mortality rate in type 2 myocardial infarction: observations from an unselected hospital cohort. Am. J. Med. 127, 295–302 (2014).

    Article  PubMed  Google Scholar 

  80. Sandoval, Y. et al. Cardiac troponin changes to distinguish type 1 and type 2 myocardial infarction and 180-day mortality risk. Eur. Heart J. Acute Cardiovasc. Care 3, 317–325 (2014).

    Article  PubMed  Google Scholar 

  81. Shah, A. S. et al. Sensitive troponin assay and the classification of myocardial infarction. Am. J. Med. 128, 493–501.e3 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sandoval, Y. & Thygesen, K. Myocardial infarction type 2 and myocardial injury. Clin. Chem. 63, 101–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Amsterdam, E. A. et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 64, e139–e228 (2014).

    Article  PubMed  Google Scholar 

  84. Burgdorf, C., Schubert, A., Schunkert, H., Kurowski, V. & Radke, P. W. Release patterns of copeptin and troponin in Tako-Tsubo cardiomyopathy. Peptides 34, 389–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Scheitz, J. F. et al. Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int. J. Cardiol. 177, 886–893 (2014).

    Article  PubMed  Google Scholar 

  86. Ukena, C. et al. Diagnostic and prognostic validity of different biomarkers in patients with suspected myocarditis. Clin. Res. Cardiol. 103, 743–751 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Vagnarelli, F. et al. Troponin T elevation in acute aortic syndromes: frequency and impact on diagnostic delay and misdiagnosis. Eur. Heart J. Acute Cardiovasc. Care 5, 61–71 (2016).

    Article  PubMed  Google Scholar 

  88. Alpert, J. S. & Thygesen, K. A. The case for a revised definition of myocardial infarction — the ongoing conundrum of type 2 myocardial infarction versus myocardial injury. JAMA Cardiol. 1, 249–250 (2016).

    Article  PubMed  Google Scholar 

  89. Nagele, P. The case for a revised definition of myocardial infarction — resolving the ambiguity of type 2 myocardial infarction. JAMA Cardiol. 1, 247–248 (2016).

    Article  PubMed  Google Scholar 

  90. Peacock, W. F. IV et al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 358, 2117–2126 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Felker, G. M. et al. Serial high sensitivity cardiac troponin T measurement in acute heart failure: insights from the RELAX-AHF study. Eur. J. Heart Fail. 17, 1262–1270 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Sakhuja, R. et al. Amino-terminal pro-brain natriuretic peptide, brain natriuretic peptide, and troponin T for prediction of mortality in acute heart failure. Clin. Chem. 53, 412–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Pascual-Figal, D. A. et al. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am. Heart J. 163, 1002–1010 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Pandey, A. et al. Factors associated with and prognostic implications of cardiac troponin elevation in decompensated heart failure with preserved ejection fraction: findings from the American Heart Association Get With The Guidelines — Heart Failure Program. JAMA Cardiol. 2, 136–145 (2017).

    Article  PubMed  Google Scholar 

  95. Omland, T., Rosjo, H., Giannitsis, E. & Agewall, S. Troponins in heart failure. Clin. Chim. Acta 443, 78–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Novo, G. et al. Troponin I/ejection fraction ratio: a new index to differentiate Takotsubo cardiomyopathy from myocardial infarction. Int. J. Cardiol. 180, 255–257 (2015).

    Article  PubMed  Google Scholar 

  97. Konstantinides, S. V. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 35, 3033–3069 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Becattini, C., Vedovati, M. C. & Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation 116, 427–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Lankeit, M. et al. Highly sensitive troponin T assay in normotensive patients with acute pulmonary embolism. Eur. Heart J. 31, 1836–1844 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Imazio, M. et al. Cardiac troponin I in acute pericarditis. J. Am. Coll. Cardiol. 42, 2144–2148 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Imazio, M. et al. Myopericarditis versus viral or idiopathic acute pericarditis. Heart 94, 498–501 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Lindner, G., Pfortmueller, C. A., Braun, C. T. & Exadaktylos, A. K. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: a cross-sectional analysis. Intern. Emerg. Med. 9, 335–339 (2014).

    Article  PubMed  Google Scholar 

  103. Caforio, A. L. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648 (2013).

    Article  PubMed  Google Scholar 

  104. Agewall, S., Giannitsis, E., Jernberg, T. & Katus, H. Troponin elevation in coronary versus non-coronary disease. Eur. Heart J. 32, 404–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Bessiere, F., Khenifer, S., Dubourg, J., Durieu, I. & Lega, J. C. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 39, 1181–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Wilhelm, J. et al. Elevated troponin in septic patients in the emergency department: frequency, causes, and prognostic implications. Clin. Res. Cardiol. 103, 561–567 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Rosjo, H. et al. Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Med. 37, 77–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. de Groot, B., Verdoorn, R. C., Lameijer, J. & van der Velden, J. High-sensitivity cardiac troponin T is an independent predictor of inhospital mortality in emergency department patients with suspected infection: a prospective observational derivation study. Emerg. Med. J. 31, 882–888 (2014).

    Article  PubMed  Google Scholar 

  109. Masson, S. et al. Sequential N-terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin measurements during albumin replacement in patients with severe sepsis or septic shock. Crit. Care Med. 44, 707–716 (2016).

    CAS  PubMed  Google Scholar 

  110. Faiz, K. W., Thommessen, B., Einvik, G., Omland, T. & Ronning, O. M. Prognostic value of high-sensitivity cardiac troponin T in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 23, 241–248 (2014).

    Article  PubMed  Google Scholar 

  111. Scheitz, J. F., Nolte, C. H., Laufs, U. & Endres, M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke 46, 1132–1140 (2015).

    Article  PubMed  Google Scholar 

  112. Jauch, E. C. et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44, 870–947 (2013).

    Article  PubMed  Google Scholar 

  113. Mochmann, H. C. et al. Coronary angiographic findings in acute ischemic stroke patients with elevated cardiac troponin: the Troponin Elevation in Acute Ischemic Stroke (TRELAS) study. Circulation 133, 1264–1271 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Omland, T. et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 361, 2538–2547 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Omland, T. et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J. Am. Coll. Cardiol. 61, 1240–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Everett, B. M. et al. Troponin and cardiac events in stable ischemic heart disease and diabetes. N. Engl. J. Med. 373, 610–620 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. White, H. D. et al. Association of contemporary sensitive troponin I levels at baseline and change at 1 year with long-term coronary events following myocardial infarction or unstable angina: results from the LIPID Study (Long-Term Intervention With Pravastatin in Ischaemic Disease). J. Am. Coll. Cardiol. 63, 345–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Korosoglou, G. et al. Determinants of troponin release in patients with stable coronary artery disease: insights from CT angiography characteristics of atherosclerotic plaque. Heart 97, 823–831 (2011).

    Article  PubMed  Google Scholar 

  119. deFilippi, C. R. & Herzog, C. A. Interpreting cardiac biomarkers in the setting of chronic kidney disease. Clin. Chem. 63, 59–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. deFilippi, C. et al. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin. Chem. 58, 1342–1351 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Dubin, R. F. et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 14, 229 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Bansal, N. et al. High-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) and risk of incident heart failure in patients with CKD: the Chronic Renal Insufficiency Cohort (CRIC) study. J. Am. Soc. Nephrol. 26, 946–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. McGill, D., Talaulikar, G., Potter, J. M., Koerbin, G. & Hickman, P. E. Over time, high-sensitivity TnT replaces NT-proBNP as the most powerful predictor of death in patients with dialysis-dependent chronic renal failure. Clin. Chim. Acta 411, 936–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Latini, R. et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116, 1242–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Tentzeris, I. et al. Complementary role of copeptin and high-sensitivity troponin in predicting outcome in patients with stable chronic heart failure. Eur. J. Heart Fail. 13, 726–733 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Barlera, S. et al. Predictors of mortality in 6975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico-Heart Failure trial: proposal for a nomogram. Circ. Heart Fail. 6, 31–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Masson, S. et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation 125, 280–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Santhanakrishnan, R. et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 14, 1338–1347 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Jhund, P. S. et al. Elevation in high-sensitivity troponin T in heart failure and preserved ejection fraction and influence of treatment with the angiotensin receptor neprilysin inhibitor LCZ696. Circ. Heart Fail. 7, 953–959 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. de Lemos, J. A. et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304, 2503–2512 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Saunders, J. T. et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 123, 1367–1376 (2010).

    Article  CAS  Google Scholar 

  132. Blankenberg, S. et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation 121, 2388–2397 (2010).

    Article  PubMed  Google Scholar 

  133. Blankenberg, S. et al. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur. Heart J. 37, 2428–2437 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Everett, B. M., Zeller, T., Glynn, R. J., Ridker, P. M. & Blankenberg, S. High-sensitivity cardiac troponin I and B-type natriuretic peptide as predictors of vascular events in primary prevention: impact of statin therapy. Circulation 131, 1851–1860 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ford, I. et al. High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J. Am. Coll. Cardiol. 68, 2719–2728 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bonaca, M. P. et al. Prognostic performance of a high-sensitivity assay for cardiac troponin I after non-ST elevation acute coronary syndrome: analysis from MERLIN-TIMI 36. Eur. Heart J. Acute Cardiovasc. Care 4, 431–440 (2015).

    Article  PubMed  Google Scholar 

  137. Rubini Gimenez, M. et al. Rapid rule out of acute myocardial infarction using undetectable levels of high-sensitivity cardiac troponin. Int. J. Cardiol. 168, 3896–3901 (2013).

    Article  PubMed  Google Scholar 

  138. Sullivan, S. et al. Development of an enhanced chemiluminescent high sensitivity troponin I assay* on VITROS® 5600 Integrated and VITROS® 3600 and ECi/ECiQ Immunodiagnostic Systems [abstract B-025]. Clin. Chem. Lab. Med. 53 (Suppl.), S497 (2015).

    Google Scholar 

  139. Krintus, M. et al. European multicenter analytical evaluation of the Abbott ARCHITECT STAT high sensitive troponin I immunoassay. Clin. Chem. Lab. Med. 52, 1657–1665 (2014).

    CAS  PubMed  Google Scholar 

  140. Di Serio, F. et al. Evaluation of analytical performance of the Pathfast cardiac troponin I. Clin. Chem. Lab. Med. 47, 829–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Spanuth, E., Thomae, R. & Giannitsis, E. Analytical and diagnostic characteristics of the high-sensitivity PATHFAST troponin I assay [abstract]. Crit. Care. 19 (Suppl. 1), P159 (2015).

    Article  PubMed Central  Google Scholar 

  142. Slagman, A. et al. Diagnostic performance of a high-sensitive troponin T assay and a troponin T point of care assay in the clinical routine of an emergency department: a clinical cohort study. Int. J. Cardiol. 230, 454–460 (2016).

    Article  PubMed  Google Scholar 

  143. Kemper, D. W. et al. Analytical evaluation of a new point of care system for measuring cardiac troponin I. Clin. Biochem. 50, 174–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Boeddinghaus, J. et al. Two-hour algorithm for triage towards rule-out and rule-in of acute myocardial infarction by use of high-sensitivity cardiac troponin I. Clin. Chem. 62, 494–504 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Keller, T. et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N. Engl. J. Med. 361, 868–877 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Goorden, S. M. et al. A novel troponin I rule-out value below the upper reference limit for acute myocardial infarction. Heart 102, 1721–1727 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Reichlin, T. et al. One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch. Intern. Med. 172, 1211–1218 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.W., J.T.N., and N.A.S. researched data for the article and wrote the manuscript. All the authors discussed the content of the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Dirk Westermann.

Ethics declarations

Competing interests

S.B. declares that he has received honoraria from Abbott Diagnostics, Roche Diagnostics, Siemens, and Thermo Fisher, and is a consultant for Thermo Fisher. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westermann, D., Neumann, J., Sörensen, N. et al. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol 14, 472–483 (2017). https://doi.org/10.1038/nrcardio.2017.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing