Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms

Key Points

  • The concept of 'rotors' or 'spiral wave re-entry' is an approach to understanding cardiac re-entry that has been developed extensively over the past 15 years

  • Application of these concepts has improved our appreciation of the determinants of many forms of cardiac arrhythmia, including atrial fibrillation (AF)

  • Spiral wave re-entry is a sophisticated and generalizable paradigm that can be applied to all forms of cardiac re-entry, including multiple wave re-entry, re-entry around an anatomical obstacle, and discrete functional re-entry circuits

  • Phase analysis is a useful method to analyse spiral wave re-entry, identify spiral-wave core tips manifesting as phase singularities, and track their movement

  • Concepts associated with spiral wave re-entry help us to understand a range of important properties of AF, including mechanisms that maintain the arrhythmia and the effects of antiarrhythmic drugs

  • Properties of AF-maintaining rotors are central to improving drug therapy and ablation procedures; aspects of rotors in AF remain highly controversial, but ongoing research is designed to address these issues

Abstract

Treatment of atrial fibrillation (AF), the most common arrhythmia in clinical practice, remains challenging. Improved understanding of underlying mechanisms is needed to improve therapy. Functional re-entry is central to AF maintenance. The first detailed, quantitative theory of functional re-entry, the 'leading circle' model, was developed 40 years ago. Subsequently, an alternative paradigm based on 'spiral waves' has evolved. Spiral-wave generators, or 'rotors', have been identified using advanced mapping methods in experimental and clinical AF. A central tool in the analysis of spiral-wave rotors is the phase transformation, allowing for easier visualization of rotors and tracking of 'phase singularity' points at the rotor tip. In contrast to leading circle theory, which is expressed in terms familiar to (and easily understood by) cardiologists, the ideas needed to understand rotors are much more theoretical and harder for clinicians to apply. In this Review, we summarize the basic notions of phase mapping and spiral-wave rotors, and the ways in which rotor sources might be involved in AF maintenance. We discuss competing observations about the role of spatially confined rotors, short-lived rotors clustered at the edge of fibrotic zones, endocardial–epicardial interactive breeder properties and transmural re-entry, as well as studies underway to resolve them. We conclude with consideration of the clinical relevance of the issues discussed and their potential implications for the management of patients with AF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main features of leading circle versus spiral wave concepts of re-entry.
Figure 2: Determination of phase values.
Figure 3: Comparison of transmembrane potential (Vm) and phase mapping for propagation during fixed-rate pacing in canine right atrium.
Figure 4: Maps of rotor activity.
Figure 5: Rotors, wavebreak, and multiple circuit re-entry.
Figure 6: Effects of ion current changes on rotor properties and stability.

Similar content being viewed by others

References

  1. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Woods, C. E. & Olgin, J. Atrial fibrillation therapy now and in the future: drugs, biologicals, and ablation. Circ. Res. 114, 1532–1546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heijman, J. et al. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc. Res. 109, 467–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Nattel, S. & Dobrev, D. Controversies about atrial fibrillation mechanisms: aiming for order in chaos and whether it matters. Circ. Res. (in press).

  6. Mines, G. R. On circulating excitation in heart muscle and their possible relation to tachycardia and fibrillation. Trans. R. Soc. Can. 4, 43–53 (1914).

    Google Scholar 

  7. Garrey, W. E. The nature of fibrillatory contraction of the heart, its relation to tissue mass and form. Am. J. Physiol. 33, 397–414 (1914).

    Article  Google Scholar 

  8. Garrey, W. E. Auricular fibrillation. Physiol. Rev. 4, 215–250 (1924).

    Article  Google Scholar 

  9. Allessie, M. A., Bonke, F. I. & Schopman, F. J. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res. 41, 9–18 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Smeets, J. L., Allessie, M. A., Lammers, W. J., Bonke, F. I. & Hollen, J. The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ. Res. 58, 96–108 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Comtois, P., Kneller, J. & Nattel, S. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7 (Suppl. 2), 10–20 (2005).

    Article  PubMed  Google Scholar 

  12. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Krinsky, V. I. Spread of excitation in an inhomogeneous medium (state similar to cardiac fibrillation). Biofizika 11, 676–683 (1966).

    Google Scholar 

  14. Winfree, A. T. Sudden cardiac death: a problem in topology. Sci. Am. 248, 144–161 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Gray, R. A., Pertsov, A. M. & Jalife, J. Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Umapathy, K. et al. Phase mapping of cardiac fibrillation. Circ. Arrhythm. Electrophysiol. 3, 105–114 (2010).

    Article  PubMed  Google Scholar 

  17. Walters, T. E., Lee, G., Spence, S. & Kalman, J. M. The effect of electrode density on the interpretation of atrial activation patterns in epicardial mapping of human persistent atrial fibrillation. Heart Rhythm 13, 1215–1220 (2016).

    Article  PubMed  Google Scholar 

  18. Bray, M. A. & Wikswo, J. P. Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 051902 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Kneller, J. et al. Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ. Res. 90, E73–E87 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Trayanova, N. A. Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. Circ. Res. 114, 1516–1531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M. & Jalife, J. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 98, 1236–1248 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mandapati, R., Skanes, A., Chen, J., Berenfeld, O. & Jalife, J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101, 194–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Berenfeld, O., Zaitsev, A. V., Mironov, S. F., Pertsov, A. M. & Jalife, J. Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ. Res. 90, 1173–1180 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Zou, R., Kneller, J., Leon, L. J. & Nattel, S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am. J. Physiol. Heart Circ. Physiol. 289, H1002–H1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Moe, G. K. On the multiple wavelet hypothesis of atrial fibrillation. Arch. Int. Pharmacol. Ther. 140, 183–188 (1962).

    Google Scholar 

  26. Kneller, J. et al. Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model. Circ. Res. 96, e35–e47 (2005).

    CAS  PubMed  Google Scholar 

  27. Comtois, P. et al. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates. Am. J. Physiol. Heart Circ. Physiol. 295, H1489–H1504 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Nattel, S., Burstein, B. & Dobrev, D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62–73 (2008).

    Article  PubMed  Google Scholar 

  30. Heijman, J., Voigt, N., Nattel, S. & Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 114, 1483–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bikou, O. et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc. Res. 92, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Igarashi, T. et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 125, 216–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Burstein, B., Qi, X. Y., Yeh, Y. H., Calderone, A. & Nattel, S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc. Res. 76, 442–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Martins, R. P. et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation 129, 1472–1482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pandit, S. V. et al. Ionic determinants of functional reentry in a 2D model of human atrial cells during simulated chronic atrial fibrillation. Biophys. J. 88, 3806–3821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Filgueiras-Rama, D. et al. Chloroquine terminates stretch-induced atrial fibrillation more effectively than flecainide in the sheep heart. Circ. Arrhythm. Electrophysiol. 5, 561–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McDowell, K. S. et al. Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. Biophys. J. 104, 2764–2773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, T. J. et al. Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circ. Res. 83, 448–462 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Zahid, S. et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110, 443–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jalife, J., Berenfeld, O. & Mansour, M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc. Res. 54, 204–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Jalife, J. Déjà vu in the theories of atrial fibrillation dynamics. Cardiovasc. Res. 89, 766–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Ikeda, T. et al. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size. Circ. Res. 81, 753–764 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Efimov, I. R., Krinsky, V. I. & Jalife, J. Dynamics of rotating vortices in the Beeler–Reuter model of cardiac tissue. Chaos Solitons Fractals 5, 513–526 (1995).

    Article  Google Scholar 

  44. Cuculich, P. S. et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 122, 1364–1372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R. & Rudy, Y. Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms. Circulation 97, 1496–1507 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Narayan, S. M., Krummen, D. E. & Rappel, W. J. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J. Cardiovasc. Electrophysiol. 23, 447–454 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Narayan, S. M. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J. Am. Coll. Cardiol. 60, 628–636 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Narayan, S. M. et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation). J. Am. Coll. Cardiol. 63, 1761–1768 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Swarup, V. et al. Stability of rotors and focal sources for human atrial fibrillation: focal impulse and rotor mapping (FIRM) of AF sources and fibrillatory conduction. J. Cardiovasc. Electrophysiol. 25, 1284–1292 (2014).

    Article  PubMed  Google Scholar 

  50. Lin, Y. J. et al. Prevalence, characteristics, mapping, and catheter ablation of potential rotors in nonparoxysmal atrial fibrillation. Circ. Arrhythm. Electrophysiol. 6, 851–858 (2013).

    Article  PubMed  Google Scholar 

  51. Ganesan, A. N. et al. Bipolar electrogram Shannon entropy at sites of rotational activation: implications for ablation of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 6, 48–57 (2013).

    Article  PubMed  Google Scholar 

  52. Arunachalam, S. P., Mulpuru, S. K., Friedman, P. A. & Tolkacheva, E. G. Feasibility of visualizing higher regions of Shannon entropy in atrial fibrillation patients. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 4499–4502 (2015).

    Google Scholar 

  53. Walters, T. E. et al. Temporal stability of rotors and atrial activation patterns in persistent human atrial fibrillation: a high-density epicardial mapping study of prolonged recordings. JACC Clin. Electrophysiol. 1, 14–24 (2015).

    Article  PubMed  Google Scholar 

  54. Lee, G. et al. Epicardial wave mapping in human long-lasting persistent atrial fibrillation: transient rotational circuits, complex wavefronts, and disorganized activity. Eur. Heart J. 35, 86–97 (2014).

    Article  PubMed  Google Scholar 

  55. Haissaguerre, M. et al. Driver domains in persistent atrial fibrillation. Circulation 130, 530–538 (2014).

    Article  PubMed  Google Scholar 

  56. Haissaguerre, M. et al. Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J. Physiol. 594, 2387–2398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vigmond, E., Pashaei, A., Amraoui, S., Cochet, H. & Haissaguerre, M. Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm 13, 1536–1543 (2016).

    Article  PubMed  Google Scholar 

  58. Alonso, S. & Bär, M. Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys. Rev. Lett. 110, 158101 (2013).

    Article  PubMed  CAS  Google Scholar 

  59. Rodrigo, M. et al. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm 11, 1584–1591 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N. & Rudy, Y. Methodology considerations in phase mapping of human cardiac arrhythmias. Circ. Arrhythm. Electrophysiol. 9, e004409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benharash, P. et al. Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation. Circ. Arrhythm. Electrophysiol. 8, 554–561 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Buch, E. et al. Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience. Heart Rhythm 13, 636–641 (2016).

    Article  PubMed  Google Scholar 

  63. Gianni, C. et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm 13, 830–835 (2016).

    Article  PubMed  Google Scholar 

  64. Berntsen, R. F., Håland, T. F., Skårdal, R. & Holm, T. Focal impulse and rotor modulation as a stand-alone procedure for the treatment of paroxysmal atrial fibrillation: a within-patient controlled study with implanted cardiac monitoring. Heart Rhythm 13, 1768–1774 (2016).

    Article  PubMed  Google Scholar 

  65. Steinberg, J. S. et al. Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up. Heart Rhythm 14, 192–197 (2017).

    Article  PubMed  Google Scholar 

  66. Jalife, J. et al. Letter by Jalife et al. regarding article, “Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation”. Circ. Arrhythm. Electrophysiol. 8, 1296–1298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Buch, E. et al. Response to letter by Jalife et al. regarding article, “Quantitative analysis of localized sources identified by focal impulse and rotor mapping in atrial fibrillation”. Circ. Arrhythm. Electrophysiol. 8, 1299–1300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mahmood Alhusseini, M. S. et al. Two independent mapping techniques identify rotational activity patterns at sites of local termination during persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. http://dx.doi.org/10.1111/jce.13177 (2017).

  69. Lee, S. et al. Simultaneous biatrial high-density (510–512 electrodes) epicardial mapping of persistent and long-standing persistent atrial fibrillation in patients: new insights into the mechanism of its maintenance. Circulation 132, 2108–2117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. de Bakker, J. M. & van Dessel, P. F. Long-standing persistent atrial fibrillation: can we distinguish ectopic activity from reentry by epicardial mapping? Circulation 132, 2103–2105 (2015).

    Article  PubMed  Google Scholar 

  71. Schuessler, R. B. et al. Simultaneous epicardial and endocardial activation sequence mapping in the isolated canine right atrium. Circulation 88, 250–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Derakhchan, K. et al. Method for simultaneous epicardial and endocardial mapping of in vivo canine heart: application to atrial conduction properties and arrhythmia mechanisms. J. Cardiovasc. Electrophysiol. 12, 548–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Gutbrod, S. R. et al. Quantification of the transmural dynamics of atrial fibrillation by simultaneous endocardial and epicardial optical mapping in an acute sheep model. Circ. Arrhythm. Electrophysiol. 8, 456–465 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. van der Does, L. J., Kik, C., Bogers, A. J., Allessie, M. A. & de Groot, N. M. Dynamics of endo- and epicardial focal fibrillation waves at the right atrium in a patient with advanced atrial remodelling. Can. J. Cardiol. 32, 1260.e19–1260.e21 (2016).

    Article  Google Scholar 

  75. de Groot, N. et al. Direct proof of endo-epicardial asynchrony of the atrial wall during atrial fibrillation in humans. Circ. Arrhythm. Electrophysiol. 9, e003648 (2016).

    Article  PubMed  Google Scholar 

  76. Hansen, B. J. et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur. Heart J. 36, 2390–2401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsuo, S. et al. Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. J. Am. Coll. Cardiol. 54, 788–795 (2009).

    Article  PubMed  Google Scholar 

  78. Aguilar, M., Xiong, F., Qi, X. Y., Comtois, P. & Nattel, S. Potassium channel blockade enhances atrial fibrillation-selective antiarrhythmic effects of optimized state-dependent sodium channel blockade. Circulation 132, 2203–2211 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Nishida, K., Datino, T., Macle, L. & Nattel, S. Atrial fibrillation ablation: translating basic mechanistic insights to the patient. J. Am. Coll. Cardiol. 64, 823–831 (2014).

    Article  PubMed  Google Scholar 

  80. Nery, P. B., Thornhill, R., Nair, G. M., Pena, E. & Redpath, C. J. Scar-based catheter ablation for persistent atrial fibrillation. Curr. Opin. Cardiol. 32, 1–9 (2017).

    Article  PubMed  Google Scholar 

  81. Blandino, A. et al. Left atrial substrate modification targeting low-voltage areas for catheter ablation of atrial fibrillation: a systematic review and meta-analysis. Pacing Clin. Electrophysiol. 40, 199–212 (2017).

    Article  PubMed  Google Scholar 

  82. Han, F. T. & Marrouche, N. An atrial fibrosis-based approach for atrial fibrillation ablation. Future Cardiol. 11, 673–681 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02529319 (2016).

  84. Boyle, P. M., Zahid, S. & Trayanova, N. A. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace 18 (Suppl. 4), iv136–iv145 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Savelieva, I., Kakouros, N., Kourliouros, A. & Camm, A. J. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention. Europace 13, 308–328 (2011).

    Article  PubMed  Google Scholar 

  86. Miller, J. D. et al. Obesity, exercise, obstructive sleep apnea, and modifiable atherosclerotic cardiovascular disease risk factors in atrial fibrillation. J. Am. Coll. Cardiol. 66, 2899–2906 (2015).

    Article  PubMed  Google Scholar 

  87. Abed, H. S. et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 310, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Haemers, P. et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur. Heart J. 38, 53–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Iwasaki, Y. K. et al. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J. Am. Coll. Cardiol. 64, 2013–2023 (2014).

    Article  PubMed  Google Scholar 

  90. Fein, A. S. et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 62, 300–305 (2013).

    Article  PubMed  Google Scholar 

  91. Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998).

    CAS  PubMed  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02799043 (2017).

  93. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02703454 (2016).

  94. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02169037 (2016).

  95. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02456233 (2016).

  96. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02274857 (2016).

Download references

Acknowledgements

The authors are supported by a Foundation Grant from the Canadian Institutes of Health Research and an Operating Grant from the Quebec Heart and Stroke Foundation. The authors thank Jennifer Bacchi, Montreal Heart Institute, Quebec, Canada, for her excellent secretarial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. S.N. wrote the manuscript. S.N. and M.A. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Stanley Nattel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nattel, S., Xiong, F. & Aguilar, M. Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms. Nat Rev Cardiol 14, 509–520 (2017). https://doi.org/10.1038/nrcardio.2017.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing