Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current and future antiplatelet therapies: emphasis on preserving haemostasis

This article has been updated

Key Points

  • Antiplatelet agents form a cornerstone of therapy for patients with acute coronary syndrome undergoing percutaneous coronary intervention, as well as in the secondary prevention of cardiovascular events

  • Currently available antiplatelet agents, including cyclooxygenase 1 inhibitors, P2Y purinoreceptor 12 (P2Y12) antagonists, protease-activated receptor 1 antagonists, and glycoprotein (GP) IIb/IIIa antagonists, inhibit processes important for both thrombosis and haemostasis

  • Bleeding remains a major limitation of current therapeutic approaches, with the most intensive antithrombotic regimens associated with an increased risk of bleeding

  • The adverse effects of bleeding on mortality and cardiovascular outcomes might offset the benefit of potent antiplatelet strategies

  • Experimental work has highlighted that thrombus formation in vivo is a dynamic process; new regulators of thrombus formation and, therefore, therapeutic targets that do not impair haemostasis have been identified

  • New antiplatelet strategies, including inhibitors of phosphatidylinositol 3-kinase-β (PI3Kβ), protein disulfide-isomerase (PDI), activated GPIIb/IIIa, GPIIb/IIIa outside-in signalling, protease-activated receptors, and platelet GPVI-mediated adhesion pathways, are in preclinical and early-phase clinical trials

Abstract

Antiplatelet drugs, such as aspirin, P2Y12 antagonists, and glycoprotein (GP) IIb/IIIa inhibitors, have proved to be successful in reducing the morbidity and mortality associated with arterial thrombosis. These agents are, therefore, the cornerstone of therapy for patients with acute coronary syndromes. However, these drugs all carry an inherent risk of bleeding, which is associated with adverse cardiovascular outcomes and mortality. Thus, the potential benefits of more potent, conventional antiplatelet drugs are likely be offset by the increased risk of bleeding. Data from experiments in vivo have highlighted potentially important differences between haemostasis and thrombosis, raising the prospect of developing new antiplatelet drugs that are not associated with bleeding. Indeed, in preclinical studies, several novel antiplatelet therapies that seem to inhibit thrombosis while maintaining haemostasis have been identified. These agents include inhibitors of phosphatidylinositol 3-kinase-β (PI3Kβ), protein disulfide-isomerase, activated GPIIb/IIIa, GPIIb/IIIa outside-in signalling, protease-activated receptors, and platelet GPVI-mediated adhesion pathways. In this Review, we discuss how a therapeutic ceiling has been reached with existing antiplatelet drugs, whereby increased potency is offset by elevated bleeding risk. The latest advances in our understanding of thrombus formation have informed the development of new antiplatelet drugs that are potentially safer than currently available therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of platelet adhesion and aggregation.
Figure 2: The heterogeneous nature of thrombus formation in vivo.
Figure 3: Current targets of antiplatelet therapies.
Figure 4: Novel therapeutic targets to differentiate thrombosis from haemostasis.

Similar content being viewed by others

Change history

  • 16 January 2018

    In the version of this article initially published online, joint first authorship was not attributed to James D. McFadyen and Mathieu Schaff. This error has been corrected for the HTML, print and PDF versions of the article.

References

  1. Naghavi, M. et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

    Article  Google Scholar 

  2. Mendis, S., Puska, P. & Norrving, B. in Global Atlas on Cardiovascular Disease Prevention and Control (eds Mendis, S., Puska, P. & Norrving, B) 113 (WHO, 2011).

    Google Scholar 

  3. Bloom, D. E. et al. The Global Economic Burden of Non-communicable Diseases (World Economic Forum, 2011).

    Google Scholar 

  4. Falk, E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50, 127–134 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruggeri, Z. M. Structure and function of von Willebrand factor. Thromb. Haemost. 82, 576–584 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Ruggeri, Z. M. Platelet adhesion under flow. Microcirculation 16, 58–83 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McFadyen, J. D. & Jackson, S. P. Differentiating haemostasis from thrombosis for therapeutic benefit. Thromb. Haemost. 110, 859–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Dütting, S., Bender, M. & Nieswandt, B. Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol. Sci. 11, 583–590 (2012).

    Article  CAS  Google Scholar 

  9. Jin, J., Daniel, J. L. & Kunapuli, S. P. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem. 273, 2030–2034 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, J. S., Ramamurthy, S. K., Lin, X. & Le Breton, G. C. Cell signalling through thromboxane A2 receptors. Cell Signal. 16 521–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Coughlin, S. R. How the protease thrombin talks to cells. Proc. Natl Acad. Sci. USA 96, 11023–11027 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bennett, J. S. Structure and function of the platelet integrin αIIbβ3 . J. Clin. Invest. 115, 3363–3369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nieswandt, B., Varga-Szabo, D. & Elvers, M. Integrins in platelet activation. J. Thromb. Haemost. 7 (Suppl. 1), 206–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Furie, B. & Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 359, 938–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Ishii, K., Hein, L., Kobilka, B. & Coughlin, S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J. Biol. Chem. 268, 9780–9786 (1993).

    CAS  PubMed  Google Scholar 

  16. Covic, L., Singh, C., Smith, H. & Kuliopulos, A. Role of the PAR4 thrombin receptor in stabilizing platelet-platelet aggregates as revealed by a patient with Hermansky-Pudlak syndrome. Thromb. Haemost. 87, 722–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Nesbitt, W. S. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Stalker, T. J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121, 1875–1885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welsh, J. D. et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124, 1808–1815 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stalker, T. J. et al. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood 124, 1824–1831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jackson, S. P. et al. PI 3-kinase p110β: a new target for antithrombotic therapy. Nat. Med. 11, 507–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Z., Delaney, M. K., O'Brien, K. A. & Du, X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 30, 2341–2349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shattil, S. J. & Newman, P. J. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 104, 1606–1615 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, B. et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503, 131–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furie, B. & Flaumenhaft, R. Thiol isomerases in thrombus formation. Circ. Res. 114, 1162–1173 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho, J., Furie, B. C., Coughlin, S. R. & Furie, B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J. Clin. Invest. 118, 1123–1131 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, K. et al. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood 122, 1052–1061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yousuf, O. & Bhatt, D. L. The evolution of antiplatelet therapy in cardiovascular disease. Nat. Rev. Cardiol. 8, 547–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Deo, S. V. et al. Dual anti-platelet therapy after coronary artery bypass grafting: is there any benefit? A systematic review and meta-analysis. J. Card. Surg. 28, 109–116 (2013).

    Article  PubMed  Google Scholar 

  31. Ferreiro, J. L. & Angiolillo, D. J. New directions in antiplatelet therapy. Circ. Cardiovasc. Interv. 5, 433–445 (2012).

    Article  PubMed  Google Scholar 

  32. Hennekens, C. H., Dyken, M. L. & Fuster, V. Aspirin as a therapeutic agent in cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 96, 2751–2753 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lewis, H. D. Jr et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina — results of a Veterans Administration cooperative study. N. Engl. J. Med. 309, 396–403 (1983).

    Article  PubMed  Google Scholar 

  34. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2, 349–360 (1988).

  35. Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002).

    Article  PubMed Central  Google Scholar 

  36. Wallentin, L. P2Y(12) inhibitors: differences in properties and mechanisms of action and potential consequences for clinical use. Eur. Heart J. 30, 1964–1977 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Yusuf, S. et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345, 494–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Erlinge, D. et al. Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. J. Am. Coll. Cardiol. 52, 1968–1977 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Wallentin, L. et al. Prasugrel achieves greater and faster P2Y12 receptor-mediated platelet inhibition than clopidogrel due to more efficient generation of its active metabolite in aspirin-treated patients with coronary artery disease. Eur. Heart J. 29, 21–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Husted, S. et al. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur. Heart J. 27, 1038–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Franchi, F., Rollini, F., Muniz-Lozano, A., Cho, J. R. & Angiolillo, D. J. Cangrelor: a review on pharmacology and clinical trial development. Expert Rev. Cardiovasc. Ther. 11, 1279–1291 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bhatt, D. L. et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N. Engl. J. Med. 368, 1303–1313 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Coughlin, S. R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800–1814 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kalz, J., ten Cate, H. & Spronk, H. M. Thrombin generation and atherosclerosis. J. Thromb. Thrombolysis 37, 45–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Bonaca, M. P. et al. Antithrombotics in acute coronary syndromes. J. Am. Coll. Cardiol. 54, 969–984 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Franchi, F. & Angiolillo, D. J. Novel antiplatelet agents in acute coronary syndrome. Nat. Rev. Cardiol. 12, 30–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Tricoci, P. et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N. Engl. J. Med. 366, 20–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Michelson, A. D. Antiplatelet therapies for the treatment of cardiovascular disease. Nat. Rev. Drug Discov. 9, 154–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Bhatt, D. L. & Topol, E. J. Current role of platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes. JAMA 284, 1549–1558 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Kastrati, A. et al. Abciximab in patients with acute coronary syndromes undergoing percutaneous coronary intervention after clopidogrel pretreatment: the ISAR-REACT 2 randomized trial. JAMA 295, 1531–1538 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bosch, X., Marrugat, J. & Sanchis, J. Platelet glycoprotein IIb/IIIa blockers during percutaneous coronary intervention and as the initial medical treatment of non-ST segment elevation acute coronary syndromes. Cochrane Database Syst. Rev. 11, CD002130 (2013).

    Google Scholar 

  54. Serebruany, V. L., Malinin, A. I., Eisert, R. M. & Sane, D. C. Risk of bleeding complications with antiplatelet agents: meta-analysis of 338,191 patients enrolled in 50 randomized controlled trials. Am. J. Hematol. 75, 40–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Levine, G. N. et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 134, e123–e155 (2016).

    Article  PubMed  Google Scholar 

  57. Windecker, S. et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS): developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Article  PubMed  Google Scholar 

  58. Mehran, R. et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. Circulation 123, 2736–2747 (2011).

    Article  PubMed  Google Scholar 

  59. Mehta, S. R. et al. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 376, 1233–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Rao, S. V. et al. Bleeding and blood transfusion issues in patients with non-ST-segment elevation acute coronary syndromes. Eur. Heart J. 28, 1193–1204 (2007).

    Article  PubMed  Google Scholar 

  61. Eikelboom, J. W. et al. Adverse impact of bleeding on prognosis in patients with acute coronary syndromes. Circulation 114, 774–782 (2006).

    Article  PubMed  Google Scholar 

  62. Manoukian, S. V. et al. Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes: an analysis from the ACUITY Trial. J. Am. Coll. Cardiol. 49, 1362–1368 (2007).

    Article  PubMed  Google Scholar 

  63. Doyle, B. J., Rihal, C. S., Gastineau, D. A. & Holmes, D. R. Jr. Bleeding, blood transfusion, and increased mortality after percutaneous coronary intervention: implications for contemporary practice. J. Am. Coll. Cardiol. 53, 2019–2027 (2009).

    Article  PubMed  Google Scholar 

  64. Ducrocq, G. et al. Association of spontaneous and procedure-related bleeds with short- and long-term mortality after acute coronary syndromes: an analysis from the PLATO trial. EuroIntervention 11, 737–745 (2015).

    Article  PubMed  Google Scholar 

  65. Silvain, J. et al. Impact of red blood cell transfusion on platelet aggregation and inflammatory response in anemic coronary and noncoronary patients: the TRANSFUSION-2 study (impact of transfusion of red blood cell on platelet activation and aggregation studied with flow cytometry use and light transmission aggregometry). J. Am. Coll. Cardiol. 63, 1289–1296 (2014).

    Article  PubMed  Google Scholar 

  66. Ohman, E. M. et al. Clinically significant bleeding with low-dose rivaroxaban versus aspirin, in addition to P2Y12 inhibition, in acute coronary syndromes (GEMINI-ACS-1): a double-blind, multicentre, randomised trial. Lancet 389, 1799–1808 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Eikelboom, J. W. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377, 1319–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Vranckx, P. et al. Long-term ticagrelor monotherapy versus standard dual antiplatelet therapy followed by aspirin monotherapy in patients undergoing biolimus-eluting stent implantation: rationale and design of the GLOBAL LEADERS trial. EuroIntervention 12, 1239–1245 (2016).

    Article  PubMed  Google Scholar 

  69. Baber, U. et al. Ticagrelor with aspirin or alone in high-risk patients after coronary intervention: rationale and design of the TWILIGHT study. Am. Heart J. 182, 125–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Westein, E. et al. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl Acad. Sci. USA 110, 1357–1362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moake, J. L., Turner, N. A., Stathopoulos, N. A., Nolasco, L. H. & Hellums, J. D. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J. Clin. Invest. 78, 1456–1461 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruggeri, Z. M., Orje, J. N., Habermann, R., Federici, A. B. & Reininger, A. J. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108, 1903–1910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konstantinides, S. et al. Distinct antithrombotic consequences of platelet glycoprotein Ibα and VI deficiency in a mouse model of arterial thrombosis. J. Thromb. Haemost. 4, 2014–2021 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Bergmeier, W. et al. The role of platelet adhesion receptor GPIbα far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc. Natl Acad. Sci. USA 103, 16900–16905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strassel, C. et al. Decreased thrombotic tendency in mouse models of the Bernard–Soulier syndrome. Arterioscler. Thromb. Vasc. Biol. 27, 241–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, D., Meiring, M., Kotze, H. F., Deckmyn, H. & Cauwenberghs, N. Inhibition of platelet glycoprotein Ib, glycoprotein IIb/IIIa, or both by monoclonal antibodies prevents arterial thrombosis in baboons. Arterioscler. Thromb. Vasc. Biol. 22, 323–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Kageyama, S. et al. Anti-thrombotic effects and bleeding risk of AJvW-2, a monoclonal antibody against human von Willebrand factor. Br. J. Pharmacol. 122, 165–171 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ulrichts, H. et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 118, 757–765 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Lei, X. et al. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb. Haemost. 111, 279–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Diener, J. L. et al. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost. 7, 1155–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Wadanoli, M. et al. The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thromb. Haemost. 98, 397–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Azzam, K., Garfinkel, L. I., Bal dit Sollier, C., Cisse Thiam, M. & Drouet, L. Antithrombotic effect of a recombinant von Willebrand factor, VCL, on nitrogen laser-induced thrombus formation in guinea pig mesenteric arteries. Thromb. Haemost. 73, 318–323 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Markus, H. S. et al. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke 42, 2149–2153 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Bartunek, J. et al. Novel antiplatelet agents: ALX-0081, a nanobody directed towards von Willebrand factor. J. Cardiovasc. Transl Res. 6, 355–363 (2013).

    Article  PubMed  Google Scholar 

  85. Gratacap, M. P. et al. Regulation and roles of PI3Kβ, a major actor in platelet signaling and functions. Adv. Enzyme Regul. 51, 106–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, V. et al. Deletion of the p110β isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 115, 2008–2013 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Nylander, S. et al. Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J. Thromb. Haemost. 10, 2127–2136 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Nylander, S., Wagberg, F., Andersson, M., Skarby, T. & Gustafsson, D. Exploration of efficacy and bleeding with combined phosphoinositide 3-kinase β inhibition and aspirin in man. J. Thromb. Haemost. 13, 1494–1502 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Laurent, P. A. et al. Platelet PI3Kβ and GSK3 regulate thrombus stability at a high shear rate. Blood 125, 881–888 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Giordanetto, F. et al. Discovery of 9-(1-phenoxyethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7- carboxamides as oral PI3Kβ inhibitors, useful as antiplatelet agents. Bioorg. Med. Chem. Lett. 24, 3936–3943 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Peter, K. et al. Induction of fibrinogen binding and platelet aggregation as a potential intrinsic property of various glycoprotein IIb/IIIa (αIIbβ3) inhibitors. Blood 92, 3240–3249 (1998).

    CAS  PubMed  Google Scholar 

  92. Bassler, N. et al. A mechanistic model for paradoxical platelet activation by ligand-mimetic αIIbβ3 (GPIIb/IIIa) antagonists. Arterioscler. Thromb. Vasc. Biol. 27, e9–e15 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Peter, K. et al. Platelet activation as a potential mechanism of GP IIb/IIIa inhibitor-induced thrombocytopenia. Am. J. Cardiol. 84, 519–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Armstrong, P. C. & Peter, K. GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb. Haemost. 107, 808–814 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Li, J. et al. RUC-4: a novel αIIbβ3 antagonist for prehospital therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 34, 2321–2329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwarz, M. et al. Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ. Res. 99, 25–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Hohmann, J. D. et al. Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding? Blood 121, 3067–3075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stoll, P. et al. Targeting ligand-induced binding sites on GPIIb/IIIa via single-chain antibody allows effective anticoagulation without bleeding time prolongation. Arterioscler. Thromb. Vasc. Biol. 27, 1206–1212 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, X. et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ. Res. 114, 1083–1093 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Estevez, B., Shen, B. & Du, X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler. Thromb. Vasc. Biol. 35, 24–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Flaumenhaft, R. & De Ceunynck, K. Targeting PAR1: now what? Trends Pharmacol. Sci. 38, 701–716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aisiku, O. et al. Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood 125, 1976–1985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wong, P. C. et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci. Transl. Med. 9, eaaf5294 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02208882 (2015).

  105. Flaumenhaft, R., Furie, B. & Zwicker, J. I. Therapeutic implications of protein disulfide isomerase inhibition in thrombotic disease. Arterioscler. Thromb. Vasc. Biol. 35, 16–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02195232 (2017).

  107. Zahid, M. et al. The future of glycoprotein VI as an antithrombotic target. J. Thromb. Haemost. 10, 2418–2427 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Mangin, P. et al. Thrombin overcomes the thrombosis defect associated with platelet GPVI/FcRγ deficiency. Blood 107, 4346–4353 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Bender, M., Hagedorn, I. & Nieswandt, B. Genetic and antibody-induced glycoprotein VI deficiency equally protects mice from mechanically and FeCl3-induced thrombosis. J. Thromb. Haemost. 9, 1423–1426 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Ohlmann, P. et al. Ex vivo inhibition of thrombus formation by an anti-glycoprotein VI Fab fragment in non-human primates without modification of glycoprotein VI expression. J. Thromb. Haemost. 6, 1003–1011 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Muzard, J. et al. Design and humanization of a murine scFv that blocks human platelet glycoprotein VI in vitro. FEBS J. 276, 4207–4222 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Ungerer, M. et al. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 123, 1891–1899 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01645306 (2017).

  114. Jamasbi, J. et al. Differential inhibition of human atherosclerotic plaque-induced platelet activation by dimeric GPVI-Fc and anti-GPVI antibodies: functional and imaging studies. J. Am. Coll. Cardiol. 65, 2404–2415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Greene, T. K., Schiviz, A., Hoellriegl, W., Poncz, M. & Muchitsch, E. M. Towards a standardization of the murine tail bleeding model. J. Thromb. Haemost. 8, 2820–2822 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00853450 (2009).

Download references

Acknowledgements

J.D.M. is supported by a Haematology Society of Australia and New Zealand New Investigator Scholarship. M.S. is supported by a fellowship from the French Foundation for Medical Research. K.P. is supported by a principal research fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Karlheinz Peter.

Ethics declarations

Competing interests

K.P. is an inventor on patents describing antiplatelet antibody compounds. The other authors declare no competing interests.

Related links

FURTHER INFORMATION

WHO Cardiovascular diseases

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFadyen, J., Schaff, M. & Peter, K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat Rev Cardiol 15, 181–191 (2018). https://doi.org/10.1038/nrcardio.2017.206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing